

Welcome to AeoLiS’s documentation!

AeoLiS is a process-based model for simulating aeolian sediment
transport in situations where supply-limiting factors are important,
like in coastal environments. Supply-limitations currently supported
are soil moisture contents, sediment sorting and armouring, bed slope
effects, air humidity and roughness elements.

This documentation describes the Python implementation of the AeoLiS
model. The source code of the Python implementation can be found at
https://github.com/openearth/aeolis-python.

Contents

	Model description
	Advection Scheme

	Multi-fraction Erosion and Deposition

	Simulation of Sediment Sorting and Beach Armoring

	Simulation of the Emergence of Non-erodible Roughness Elements

	Simulation of the Hydraulic Mixing

	Simulation of surface moisture

	Shear velocity threshold

	Numerical implementation
	Advection equation

	Shear stress perturbation for non-perpendicular wind directions

	Boussinesq groundwater equation

	Basic Model Interface (BMI)

	Source code documentation
	Use of documentation

	Model classes

	Physics modules

	Helper modules

	Input files
	aeolis.txt

	x.grd

	y.grd

	z.grd

	veg.grd

	mass.txt

	wind.txt

	tide.txt

	wave.txt

	meteo.txt

	Default settings

	Model state/output

	Installation
	Requirements

	What’s New
	v2.1.1 (March 2023)

	v2.1.0 (February 2023)

	v2.0.0 (April 2022)

	v1.2.2 (18 April 2020)

	v1.1.5 (unreleased)

	v1.1.4 (15 February 2018)

	v1.1.3 (9 February 2018)

	v1.1.2 (21 December 2017)

	v1.1.1 (15 November 2017)

	v1.1.0 (27 July 2016)

Acknowledgements

AeoLiS is initially developed at Delft University of Technology with support from the ERC-Advanced
Grant 291206 Nearshore Monitoring and Modeling
(NEMO [http://nemo.citg.tudelft.nl]) and Deltares [http://www.deltares.nl]. AeoLiS is currently maintained by Bart van Westen at Deltares, Nick Cohn at U.S. Army Engineer Research and Development Center (ERDC) and Sierd de Vries at Delft University of Technology.

Indices and tables

	Index

	Search Page

Model description

The model approach of [dVvTdVvR+14] is extended to compute the
spatiotemporal varying sediment availability through simulation of the
process of beach armoring. For this purpose the bed is discretized in
horizontal grid cells and in vertical bed layers (2DV). Moreover, the
grain size distribution is discretized into fractions. This allows the
grain size distribition to vary both horizontally and vertically. A
bed composition module is used to compute the sediment availability
for each sediment fraction individually. This model approach is a
generalization of existing model concepts, like the shear velocity
threshold and critical fetch, and therefore compatible with these
existing concepts..

Advection Scheme

A 1D advection scheme is adopted in correspondence with
[dVvTdVvR+14] in which \(c\) [\(\mathrm{kg/m^2}\)] is
the instantaneous sediment mass per unit area in transport:

(1)\[\frac{\partial c}{\partial t} + u_z \frac{\partial c}{\partial x} = E - D\]

\(t\) [s] denotes time and \(x\) [m] denotes the cross-shore
distance from a zero-transport boundary. \(E\) and \(D\)
[\(\mathrm{kg/m^2/s}\)] represent the erosion and deposition terms
and hence combined represent the net entrainment of sediment. Note
that Equation (1) differs from Equation 9 in
[dVvTdVvR+14] as they use the saltation height \(h\) [m]
and the sediment concentration \(C_{\mathrm{c}}\)
[\(\mathrm{kg/m^3}\)]. As \(h\) is not solved for, the
presented model computes the sediment mass per unit area \(c = h
C_{\mathrm{c}}\) rather than the sediment concentration
\(C_{\mathrm{c}}\). For conciseness we still refer to \(c\) as
the sediment concentration.

The net entrainment is determined based on a balance between the
equilibrium or saturated sediment concentration
\(c_{\mathrm{sat}}\) [\(\mathrm{kg/m^2}\)] and the
instantaneous sediment transport concentration \(c\) and is
maximized by the available sediment in the bed \(m_{\mathrm{a}}\)
[\(\mathrm{kg/m^2}\)] according to:

(2)\[E - D = \min \left (\frac{\partial m_{\mathrm{a}}}{\partial t} \quad ; \quad \frac{c_{\mathrm{sat}} - c}{T} \right)\]

\(T\) [s] represents an adaptation time scale that is assumed
to be equal for both erosion and deposition. A time scale of 1 second
is commonly used ([dVvTdVvR+14]).

The saturated sediment concentration \(c_{\mathrm{sat}}\) is computed using an
empirical sediment transport formulation (e.g. [Bag37b]):

(3)\[q_{\mathrm{sat}} = \alpha C \frac{\rho_{\mathrm{a}}}{g} \sqrt{\frac{d_{\mathrm{n}}}{D_{\mathrm{n}}}} \left (u_z - u_{\mathrm{th}} \right)^3\]

in which \(q_{\mathrm{sat}}\) [kg/m/s] is the equilibrium or
saturated sediment transport rate and represents the sediment
transport capacity. \(u_z\) [m/s] is the wind velocity at height \(z\) [m]
and \(u_{\mathrm{th}}\) the velocity threshold [m/s]. The properties of
the sediment in transport are represented by a series of parameters:
\(C\) [–] is a parameter to account for the grain size distribution
width, \(\rho_{\mathrm{a}}\) [\(\mathrm{kg/m^3}\)] is the density of the
air, \(g\) [\(\mathrm{m/s^2}\)] is the gravitational constant,
\(d_{\mathrm{n}}\) [m] is the nominal grain size and \(D_{\mathrm{n}}\)
[m] is a reference grain size. \(\alpha\) is a constant to account for
the conversion of the measured wind velocity to the near-bed shear
velocity following Prandtl-Von Kármán’s Law of the Wall:
\(\left(\frac{\kappa}{\ln z / z'} \right)^3\) in which \(z'\) [m] is the
height at which the idealized velocity profile reaches zero and
\(\kappa\) [-] is the Von Kármán constant.

The equilibrium sediment transport rate \(q_{\mathrm{sat}}\) is
divided by the wind velocity \(u_z\) to obtain a mass per unit
area (per unit width):

(4)\[c_{\mathrm{sat}} = \max \left (0 \quad ; \quad \alpha C \frac{\rho_{\mathrm{a}}}{g} \sqrt{\frac{d_{n}}{D_{n}}} \frac{\left (u_z - u_{\mathrm{th}} \right)^3}{u_z} \right)\]

in which \(C\) [–] is an empirical constant to account for
the grain size distribution width, \(\rho_{\mathrm{a}}\)
[\(\mathrm{kg/m^3}\)] is the air density, \(g\) [\(\mathrm{m/s^2}\)] is the
gravitational constant, \(d_{\mathrm{n}}\) [m] is the nominal grain
size, \(D_{\mathrm{n}}\) [m] is a reference grain size, \(u_z\) [m/s] is
the wind velocity at height \(z\) [m] and \(\alpha\) [–] is a constant to
convert from measured wind velocity to shear velocity.

Note that at this stage the spatial variations in wind velocity are
not solved for and hence no morphological feedback is included in the
simulation. The model is initially intended to provide accurate
sediment fluxes from the beach to the dunes rather than to simulate
subsequent dune formation.

Multi-fraction Erosion and Deposition

The formulation for the equilibrium or saturated sediment
concentration \(c_{\mathrm{sat}}\) (Equation
equilibrium-transport) is capable of dealing with variations in
grain size through the variables \(u_{\mathrm{th}}\),
\(d_{\mathrm{n}}\) and \(C\) ([Bag37b]). However,
the transport formulation only describes the saturated sediment
concentration assuming a fixed grain size distribution, but does not
define how multiple fractions coexist in transport. If the saturated
sediment concentration formulation would be applied to each fraction
separately and summed up to a total transport, the total sediment
transport would increase with the number of sediment fractions. Since
this is unrealistic behavior the saturated sediment concentration
\(c_{\mathrm{sat}}\) for the different fractions should be
weighted in order to obtain a realistic total sediment
transport. Equation (2) therefore is modified to include a
weighting factor \(\hat{w}_k\) in which \(k\) represents the
sediment fraction index:

(5)\[E_k - D_k = \min \left (\frac{\partial m_{\mathrm{a},k}}{\partial t} \quad ; \quad \frac{\hat{w}_k \cdot c_{\mathrm{sat},k} - c_k}{T} \right)\]

It is common to use the grain size distribution in the bed as
weighting factor for the saturated sediment concentration
(e.g. [Delft3DFManual14], section 11.6.4). Using the grain size
distribution at the bed surface as a weighting factor assumes, in case
of erosion, that all sediment at the bed surface is equally exposed to
the wind.

Using the grain size distribution at the bed surface as weighting
factor in case of deposition would lead to the behavior where
deposition becomes dependent on the bed composition. Alternatively, in
case of deposition, the saturated sediment concentration can be
weighted based on the grain size distribution in the air. Due to the
nature of saltation, in which continuous interaction with the bed
forms the saltation cascade, both the grain size distribution in the
bed and in the air are likely to contribute to the interaction between
sediment fractions. The ratio between both contributions in the model
is determined by a bed interaction parameter \(\zeta\).

The weighting of erosion and deposition of individual fractions is
computed according to:

(6)\[\begin{split}\begin{align}
 \hat{w}_k &= \frac{w_k}{ \sum_{k=1}^{n_{\mathrm{k}}}{w_k} } \\
 \mathrm{where} \quad w_k &= (1 - \zeta) \cdot w^{\mathrm{air}}_k + (1 - \hat{S}_k) \cdot w^{\mathrm{bed}}_k
\end{align}\end{split}\]

in which \(k\) represents the sediment fraction index,
\(n_{\mathrm{k}}\) the total number of sediment fractions, \(w_k\) is the
unnormalized weighting factor for fraction \(k\), \(\hat{w}_k\) is its
normalized counterpart, \(w^{\mathrm{air}}_k\) and \(w^{\mathrm{bed}}_k\)
are the weighting factors based on the grain size distribution in the
air and bed respectively and \(\hat{S}_k\) is the effective sediment
saturation of the air. The weighting factors based on the grain size
distribution in the air and the bed are computed using mass ratios:

(7)\[w^{\mathrm{air}}_k = \frac{c_k}{c_{\mathrm{sat},k}} \quad ; \quad
w^{\mathrm{bed}}_k = \frac{m_{\mathrm{a},k}}{\sum_{k=1}^{n_{\mathrm{k}}}{m_{\mathrm{a},k}}}\]

The sum of the ratio \(w^{\mathrm{air}}_k\) over the fractions
denotes the degree of saturation of the air column for fraction
\(k\). The degree of saturation determines if erosion of a fraction may
occur. Also in saturated situations erosion of a sediment fraction can
occur due to an exchange of momentum between sediment fractions, which
is represented by the bed interaction parameter \(\zeta\). The effective
degree of saturation is therefore also influenced by the bed
interaction parameter and defined as:

(8)\[\hat{S}_k = \min \left (1 \quad ; \quad (1 - \zeta) \cdot \sum_{k=1}^{n_{\mathrm{k}}} w_k^{\mathrm{air}} \right)\]

When the effective saturation is greater than or equal to unity the
air is (over)saturated and no erosion will occur. The grain size
distribution in the bed is consequently less relevant and the second
term in Equation (7) is thus minimized and zero in case
\(\zeta = 0\). In case the effective saturation is less than unity erosion
may occur and the grain size distribution of the bed also contributes
to the weighting over the sediment fractions. The weighting factors
for erosion are then composed from both the grain size distribution in
the air and the grain size distribution at the bed surface. Finally,
the resulting weighting factors are normalized to sum to unity over
all fractions (\(\hat{w}_k\)).

The composition of weighting factors for erosion is based on the
saturation of the air column. The non-saturated fraction determines
the potential erosion of the bed. Therefore the non-saturated fraction
can be used to scale the grain size distribution in the bed in order
to combine it with the grain size distribution in the air according to
Equation (7). The non-saturated fraction of the air column
that can be used for scaling is therefore \(1 - \hat{S}_k\).

For example, if bed interaction is disabled (\(\zeta = 0\)) and
the air is 70% saturated, then the grain size distribution in the air
contributes 70% to the weighting factors for erosion, while the grain
size distribution in the bed contributes the other 30% (Figure
Fig. 1, upper left panel). In case of
(over)saturation the grain size distribution in transport contributes
100% to the weighting factors and the grain size distribution in the
bed is of no influence. Transport progresses in downwind direction
without interaction with the bed.

[image: _images/bed_interaction_parameter.pdf]

Fig. 1 Contributions of the grain size distribution in the bed and in the
air to the weighting factors \(\hat{w}_k\) for the equilibrium
sediment concentration in Equation (5) for different
values of the bed interaction parameter.

To allow for bed interaction in saturated situations in which no net
erosion can occur, the bed interaction parameter \(\zeta\) is used (Figure
Fig. 1). The bed interaction parameter
can take values between 0.0 and 1.0 in which the weighting factors for
the equilibrium or saturated sediment concentration in an
(over)saturated situation are fully determined by the grain size
distribution in the bed or in the air respectively. A bed interaction
value of 0.2 represents the situation in which the grain size
distribution at the bed surface contributes 20% to the weighting of
the saturated sediment concentration over the fractions. In the
example situation where the air is 70% saturated such value for the
bed interaction parameter would lead to weighting factors that are
constituted for \(70\% \cdot (100\% - 20\%) = 56\%\) based on the grain
size distribution in the air and for the other 44% based on the grain
size distribution at the bed surface (Figure
Fig. 1, upper right panel).

The parameterization of the exchange of momentum between sediment
fractions is an aspect of saltation that is still poorly
understood. Therefore calibration of the bed interaction parameter
\(\zeta\) is necessary. The model parameters in Equation
equilibrium-transport can be chosen in accordance with the
assumptions underlying multi-fraction sediment transport. \(C\) should
be set to 1.5 as each individual sediment fraction is well-sorted,
\(d_{\mathrm{n}}\) should be chosen equal to \(D_{\mathrm{n}}\) as the
grain size dependency is implemented through
\(u_{\mathrm{th}}\). \(u_{\mathrm{th}}\) typically varies between 1 and 6
m/s for sand.

Simulation of Sediment Sorting and Beach Armoring

Since the equilibrium or saturated sediment concentration
\(c_{\mathrm{sat},k}\) is weighted over multiple sediment fractions in
the extended advection model, also the instantaneous sediment
concentration \(c_k\) is computed for each sediment fraction
individually. Consequently, grain size distributions may vary over the
model domain and in time. These variations are thereby not limited to
the horizontal, but may also vary over the vertical since fine
sediment may be deposited on top of coarse sediment or, reversely,
fines may be eroded from the bed surface leaving coarse sediment to
reside on top of the original mixed sediment. In order to allow the
model to simulate the processes of sediment sorting and beach armoring
the bed is discretized in horizontal grid cells and vertical bed
layers (2DV; Figure Fig. 2).

The discretization of the bed consists of a minimum of three vertical
bed layers with a constant thickness and an unlimited number of
horizontal grid cells. The top layer is the bed surface layer and is
the only layer that interacts with the wind and hence determines the
spatiotemporal varying sediment availability and the contribution of
the grain size distribution in the bed to the weighting of the
saturated sediment concentration. One or more bed composition layers
are located underneath the bed surface layer and form the upper part
of the erodible bed. The bottom layer is the base layer and contains
an infinite amount of erodible sediment according to the initial grain
size distribution. The base layer cannot be eroded, but can supply
sediment to the other layers.

[image: _images/bedcomposition.pdf]

Fig. 2 Schematic of bed composition discretisation and advection
scheme. Horizontal exchange of sediment may occur solely through
the air that interacts with the bed surface layer. The detail
presents the simulation of sorting and beach armoring where the bed
surface layer in the upwind grid cell becomes coarser due to
non-uniform erosion over the sediment fractions, while the bed
surface layer in the downwind grid cell becomes finer due to
non-uniform deposition over the sediment fractions. Symbols refer
to Equations (1) and (2).

Each layer in each grid cell describes a grain size distribution over
a predefined number of sediment fractions (Figure
Fig. 2, detail). Sediment may enter or leave a
grid cell only through the bed surface layer. Since the velocity
threshold depends among others on the grain size, erosion from the bed
surface layer will not be uniform over all sediment fractions, but
will tend to erode fines more easily than coarse sediment (Figure
Fig. 2, detail, upper left panel). If sediment
is eroded from the bed surface layer, the layer is repleted by
sediment from the lower bed composition layers. The repleted sediment
has a different grain size distribution than the sediment eroded from
the bed surface layer. If more fines are removed from the bed surface
layer in a grid cell than repleted, the median grain size
increases. If erosion of fines continues the bed surface layer becomes
increasingly coarse. Deposition of fines or erosion of coarse material
may resume the erosion of fines from the bed.

In case of deposition the process is similar. Sediment is deposited in
the bed surface layer that then passes its excess sediment to the
lower bed layers (Figure Fig. 2, detail, upper
right panel). If more fines are deposited than passed to the lower bed
layers the bed surface layer becomes increasingly fine.

Simulation of the Emergence of Non-erodible Roughness Elements

Sediment sorting may lead to the emergence of non-erodible elements
from the bed. Non-erodible roughness elements may shelter the erodible
bed from wind erosion due to shear partitioning, resulting in a
reduced sediment availability ([RGL93]). Therefore the
equation of [RGL93] is implemented according to:

(9)\[u_{\mathrm{* th, R}} = u_{\mathrm{* th}} \cdot \sqrt{ \left(1 - m \cdot \sum_{k=k_0}^{n_{\mathrm{k}}}{w_k^{\mathrm{bed}}} \right) \left(1 + \frac{m \beta}{\sigma} \cdot \sum_{k=k_0}^{n_{\mathrm{k}}}{w_k^{\mathrm{bed}}} \right) }\]

in which \(\sigma\) is the ratio between the frontal area and the
basal area of the roughness elements and \(\beta\) is the ratio
between the drag coefficients of the roughness elements and the bed
without roughness elements. \(m\) is a factor to account for the
difference between the mean and maximum shear stress and is usually
chosen 1.0 in wind tunnel experiments and may be lowered to 0.5 for
field applications. The roughness density \(\lambda\) in the
original equation of [RGL93] is obtained from the mass
fraction in the bed surface layer \(w_k^{\mathrm{bed}}\) according
to:

(10)\[\lambda = \frac{\sum_{k=k_0}^{n_{\mathrm{k}}}{w_k^{\mathrm{bed}}}}{\sigma}\]

in which \(k_0\) is the index of the smallest non-erodible
sediment fraction in current conditions and \(n_{\mathrm{k}}\) is the
total number of sediment fractions. It is assumed that the sediment
fractions are ordered by increasing size. Whether a fraction is
erodible depends on the sediment transport capacity.

Simulation of the Hydraulic Mixing

As sediment sorting due to aeolian processes can lead to armoring of a
beach surface, mixing of the beach surface or erosion of course
material may undo the effects of armoring. To ensure a proper balance
between processes that limit and enhance sediment availability in the
model both types of processes need to be sufficiently represented when
simulating spatiotemporal varying bed surface properties and sediment
availability.

A typical upwind boundary in coastal environments during onshore winds
is the water line. For aeolian sediment transport the water line is a
zero-transport boundary. In the presence of tides, the intertidal
beach is flooded periodically. Hydraulic processes like wave breaking
mix the bed surface layer of the intertidal beach, break the beach
armoring and thereby influence the availability of sediment.

In the model the mixing of sediment is simulated by averaging the
sediment distribution over the depth of disturbance
(\(\Delta z_{\mathrm{d}}\)). The depth of disturbance is linearly
related to the breaker height (e.g. [Kin51], [Wil71], [MAROHare07]). [MAROHare07] proposes an empirical factor
\(f_{\Delta z_{\mathrm{d}}}\) [-] that relates the depth of disturbance
directly to the local breaker height according to:

(11)\[\Delta z_{\mathrm{d}} = f_{\Delta z_{\mathrm{d}}} \cdot \min \left (H \quad ; \quad \gamma \cdot d \right)\]

in which the offshore wave height \(H\) [m] is taken as the
local wave height maximized by a maximum wave height over depth ratio
\(\gamma\) [-]. \(d\) [m] is the water depth that is provided to the model
through an input time series of water levels. Typical values for
\(f_{\Delta z_{\mathrm{d}}}\) are 0.05 to 0.4 and 0.5 for \(\gamma\).

Simulation of surface moisture

Wave runup, capillary rise from the beach groundwater, and precipitation periodically wet the intertidal beach
temporally increasing the shear velocity threshold (
Fig. 3). Infiltration and
evaporation subsequently dry the beach.

[image: _images/moisture_processes.jpg]

Fig. 3 Illustration of processes influencing the volumetric moisture content \(\theta\) at the beach surface.

The structure of the surface moisture module and included processes are schematized in Fig. 4.
The resulting surface moisture is obtained by selecting the largest of the moisture contents computed
with the water balance approach (right column) and due to capillary rise from the groundwater table (left column).
The method is based on the assumption that the flow of soil water is small compared to the flow of groundwater
and that the beach groundwater dynamics primarily is controlled by the water level and wave action at
the seaward boundary ([RGE99], [Sch14]). Thus, there is no feedback between the processes
in the right column of Fig. 4 and the groundwater dynamics described in the left column.

[image: _images/moisture_scheme.jpg]

Fig. 4 Implementation of surface moisture processes in the AeoLiS.

Runup and wave setup

The runup height and wave setup are computed using the Stockdon formulas ([SHHS06]).
Their parameterization differs depending on the dynamic beach steepness expressed through the Irribaren number:

(12)\[\xi = \tan \beta /\sqrt {{H_0}/{L_0}}\]

where \({H_0}\) is the significant offshore wave height, \({L_0}\) is the deepwater wavelength, and \({\tan \beta}\) is the foreshore slope.

For dissipative conditions, \({\xi}\) < 0.3, the runup, \({R_2}\), is parameterized as,

(13)\[{R_2} = 0.043\sqrt {{H_0}{L_0}}\]

and wave setup:

(14)\[< \eta > = 0.02\sqrt {{H_0}{L_0}}\]

For \({\xi}\) > 0.3, runup is paramterized as,

(15)\[{R_2} = 1.1\left({0.35\beta \sqrt {{H_0}{L_0}} + \frac{{\sqrt {{H_0}{L_0}\left({0.563{\beta ^2} + 0.004} \right)} }}{2}} \right)\]

and wave setup:

(16)\[< \eta > = 0.35\xi\]

Tide- and wave-induced groundwater variations

Groundwater under sandy beaches can be considered as shallow aquifers, with only horizontal groundwater
flow so that the pressure distribution is hydrostatic ([BMH98], [BSDR19], [Nie90], [RGE99]).
The cross-shore flow dominates temporal variations of groundwater levels. Alongshore, groundwater table variations are typically small ([Sch14]).
Although the surface moisture model can be extended over a two-dimensional grid, the groundwater simulations are performed for 1D transects cross-shore
to avoid numerical instabilities at the seaward boundary and reduce computational time.

The beach aquifers is schematised as a sandy body, with saturated hydraulic conductivity, \(K\), and effective porosity, \({n_e}\).
The aquifer is assumed to rest on an impermeable surface, where \(D\) is the aquifer depth.
The groundwater elevation relative to the mean sea level (MSL) is denoted \(\eta\), and the shore-perpendicular x-axis is positive landwards,
with an arbitrary starting point. The sand is assumed to be homogenous and isotropic. In this context, isotropy implies that hydraulic conductivity
is independent of flow direction.

The horizontal groundwater discharge per unit area, \(u\), is then governed by Darcy’s law,

(17)\[u = - K\frac{{\partial \eta }}{{\partial x}}\]

and the continuity equation (see e.g., [Nie09]),

(18)\[\frac{{\partial \eta }}{{\partial t}} = - \frac{1}{{{n_e}}}\frac{\partial }{{\partial x}}((D + \eta)u)\]

where \(t\) is time.

The groundwater overheight due to runup, \({U_l}\), is computed by ([KNH94], [NDWE88]),

(19)\[\begin{split}{U_l} = \left\{ \begin{gathered}{C_l}Kf(x)\,\,\,\,{\text{if }}{x_S} \leqslant x \leqslant {x_R} \hfill \\0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{if }}x > {x_R} \hfill \\\end{gathered} \right.\end{split}\]

where \({C_l}\) is an infiltration coefficient (-), and \(f(x)\) is a function of \(x\) ranging from 0 to 1. \({x_S}\) is
the horizontal location of the sum of the still water level and wave setup, and \({x_R}\) is the horizontal location of the runup limit:

(20)\[\begin{split}f(x) = \left\{ \begin{gathered}
\frac{{x - {x_s}}}{{\frac{2}{3}\left({{x_{ru}} - {x_s}} \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,if\,{x_s} < x \leqslant {x_s} + \frac{2}{3}\left({{x_{ru}} - {x_s}} \right)\, \hfill \\
3 - \frac{{x - {x_s}}}{{\frac{1}{3}\left({{x_{ru}} - {x_s}} \right)}}\,\,\,\,\,if\,{x_s} + \frac{2}{3}\left({{x_{ru}} - {x_s}} \right)\, < x < {x_{ru}} \hfill \\
\end{gathered} \right.\end{split}\]

Substitution of \(u\) (Equation (17)) in the continuity equation (Equation (18)) with the addition of \({U_l}/{n_e}\) gives the nonlinear Boussinesq equation:

(21)\[\frac{{\partial \eta }}{{\partial t}} = \frac{K}{{{n_e}}}\frac{\partial }{{\partial x}}\left({(D + \eta)\frac{{\partial \eta }}{{\partial x}}} \right) + \frac{{{U_l}}}{{{n_e}}}\]

Capillary rise

Soil water retention (SWR) functions describe the surface moisture due to capillary transport
of water from the groundwater table ([vG80]):

(22)\[\theta (h) = {\theta _r} + \frac{{{\theta _s} - {\theta _r}}}{{{{\left[{1 + {{\left| {\alpha h} \right|}^n}} \right]}^m}}}\]

where \(h\) is the groundwater table depth, \(\alpha\) and \(n\) are fitting parameters
related to the air entry suction and the pore size distribution. The parameter \(m\) is commonly
parameterised as \(m = 1 - 1/n\).

The resulting surface moisture is computed for both drying and
wetting conditions, i.e., including the
effect of hysteresis. The moisture contents computed with drying and wetting SWR functions are denoted \({\theta ^d}(h)\) and \({\theta ^w}(h)\), respectively.
When moving between wetting and drying conditions, the soil moisture content follows an intermediate
retention curve called a scanning curve. The drying scanning curves are scaled from the main
drying curve and wetting scanning curves from the main wetting curve. The drying scanning curve is then obtained from ([Mua74]):

(23)\[{\theta ^d}({h_\Delta },h) = {\theta ^w}(h) + \frac{{\left[{{\theta ^w}({h_\Delta }) - {\theta ^w}(h)} \right]}}{{\left[{{\theta _s} - {\theta ^w}(h)} \right]}}\left[{{\theta ^d}(h) - {\theta ^w}(h)} \right]\]

where \({h_\Delta}\) is the groundwater table depth at the reversal on the wetting curve.

The wetting scanning curve is obtained from ([Mua74]):

(24)\[{\theta ^w}({h_\Delta },h) = {\theta ^w}(h) + \frac{{\left[{{\theta _s} - {\theta ^w}(h)} \right]}}{{\left[{{\theta _s} - {\theta ^w}({h_\Delta })} \right]}}\left[{{\theta ^d}({h_\Delta }) - {\theta ^w}({h_\Delta })} \right]\]

where \({h_\Delta}\) is the groundwater table depth at the reversal on the drying curve.

Infiltration

Infiltration is accounted for by assuming that excess water infiltrates until the moisture content reaches
field capacity, \({\theta_fc}\). The moisture content at field capacity is the maximum amount of water
that the unsaturated zone of soil can hold against the pull of gravity. For sandy soils,
the matric potential at this soil moisture condition is around - 1/10 bar. In equilibrium,
this potential would be exerted on the soil capillaries at the soil surface when the water
table is about 100 cm below the soil surface, \({\theta _{fc}} = {\theta ^d}(100)\).

Infiltration is represented by an
exponential decay function that is governed by a drying time scale
\(T_{\mathrm{dry}}\). Exploratory model runs of the unsaturated soil with the HYDRUS1D
([vSimrunekvSejnavG98]) hydrology model show that the increase of the
volumetric water content to saturation is almost instantaneous with
rising tide. The drying of the beach surface through infiltration
shows an exponential decay. In order to capture this behavior the
volumetric water content is implemented according to:

(25)\[\frac{{d\theta }}{{dt}} = \left({\theta - {\theta _{fc}}} \right)\left({{e^{ - \ln (2)\frac{{dt}}{{{T_{dry}}}}}}} \right)\]

An alternative formulation is used for simulations that does not account for ground water and SWR processes,

(26)\[\begin{split}p_{\mathrm{V}}^{n+1} = \left\{
 \begin{array}{ll}
 p & \mathrm{if} ~ \eta > z_{\mathrm{b}} \\
 p_{\mathrm{V}}^n \cdot e^{\frac{\log \left(0.5 \right)}{T_{\mathrm{dry}}} \cdot \Delta t^n} - E_{\mathrm{v}} \cdot \frac{\Delta t^n}{\Delta z} & \mathrm{if} ~ \eta \leq z_{\mathrm{b}} \\
 \end{array}
\right.\end{split}\]

where \(\eta\) [m+MSL] is the instantaneous water level,
\(z_{\mathrm{b}}\) [m+MSL] is the local bed elevation,
\(p_{\mathrm{V}}^n\) [-] is the volumetric water content in time step
\(n\), \(\Delta t^n\) [s] is the model time step and \(\Delta z\) is the bed
composition layer thickness. \(T_{\mathrm{dry}}\) [s] is the beach
drying time scale, defined as the time in which the beach moisture
content halves.

Precipitation and evaporation

A water balance approach accounts for the effect of precipitation and evaporation,

(27)\[\frac{{d\theta }}{{dt}} = \frac{{\left({P - E} \right)\,}}{{\Delta z}}\,\]

where \(P\) is the precipitation, \(E\) is the evaporation, and \(\Delta z\) is the thickness of the surface layer.

Evaporation is simulated using an adapted version
of the Penman-Monteith equation ([Shu93]) that is
governed by meteorological time series of solar radiation, temperature
and humidity.

\(E_{\mathrm{v}}\) [m/s] is the evaporation rate that is
implemented through an adapted version of the Penman equation
([Shu93]):

(28)\[E_{\mathrm{v}} = \frac{m_{\mathrm{v}} \cdot R_{\mathrm{n}} + 6.43 \cdot \gamma_{\mathrm{v}} \cdot (1 + 0.536 \cdot u_2) \cdot \delta e}
{\lambda_{\mathrm{v}} \cdot (m_{\mathrm{v}} + \gamma_{\mathrm{v}})} \cdot 9 \cdot 10^7\]

where \(m_{\mathrm{v}}\) [kPa/K] is the slope of the
saturation vapor pressure curve, \(R_{\mathrm{n}}\)
[\(\mathrm{MJ/m^2/day}\)] is the net radiance, \(\gamma_{\mathrm{v}}\)
[kPa/K] is the psychrometric constant, \(u_2\) [m/s] is the wind speed
at 2 m above the bed, \(\delta e\) [kPa] is the vapor pressure deficit
(related to the relative humidity) and \(\lambda_{\mathrm{v}}\) [MJ/kg]
is the latent heat vaporization. To obtain an evaporation rate in
[m/s], the original formulation is multiplied by \(9 \cdot 10^7\).

Shear velocity threshold

The shear velocity threshold represents the influence of bed surface
properties in the saturated sediment transport equation. The shear
velocity threshold is computed for each grid cell and sediment
fraction separately based on local bed surface properties, like
moisture, roughness elements and salt content. For each bed surface
property supported by the model a factor is computed to increase the
initial shear velocity threshold:

(29)\[u_{\mathrm{* th}} =
f_{u_{\mathrm{* th}}, \mathrm{M}} \cdot
f_{u_{\mathrm{* th}}, \mathrm{R}} \cdot
f_{u_{\mathrm{* th}}, \mathrm{S}} \cdot
u_{\mathrm{* th, 0}}\]

The initial shear velocity threshold \(u_{\mathrm{* th, 0}}\) [m/s] is
computed based on the grain size following [Bag37a]:

(30)\[u_{\mathrm{* th, 0}} = A \sqrt{ \frac{\rho_{\mathrm{p}} - \rho_{\mathrm{a}}}{\rho_{\mathrm{a}}} \cdot g \cdot d_{\mathrm{n}}}\]

where \(A\) [-] is an empirical constant, \(\rho_{\mathrm{p}}\)
[\(\mathrm{kg/m^3}\)] is the grain density, \(\rho_{\mathrm{a}}\)
[\(\mathrm{kg/m^3}\)] is the air density, \(g\) [\(\mathrm{m/s^2}\)] is the
gravitational constant and \(d_{\mathrm{n}}\) [m] is the nominal grain
size of the sediment fraction.

Moisture content

The shear velocity threshold is updated based on moisture content
following [Bel64]:

(31)\[f_{u_{\mathrm{* th}}, \mathrm{M}} = \max(1 \quad ; \quad 1.8 + 0.6 \cdot \log(p_{\mathrm{g}}))\]

where \(f_{u_{\mathrm{* th},M}}\) [-] is a factor in Equation (29), \(p_{\mathrm{g}}\) [-] is the geotechnical
mass content of water, which is the percentage of water compared to
the dry mass. The geotechnical mass content relates to the volumetric
water content \(p_{\mathrm{V}}\) [-] according to:

\[\begin{align}\begin{aligned}:label: vol-water\\p_{\mathrm{g}} = \frac{p_{\mathrm{V}} \cdot \rho_{\mathrm{w}}}{\rho_{\mathrm{p}} \cdot (1 - p)}\end{aligned}\end{align} \]

where \(\rho_{\mathrm{w}}\) [\(\mathrm{kg/m^3}\)] and
\(\rho_{\mathrm{p}}\) [\(\mathrm{kg/m^3}\)] are the water and particle
density respectively and \(p\) [-] is the porosity. Values for
\(p_{\mathrm{g}}\) smaller than 0.005 do not affect the shear velocity
threshold ([PT90]). Values larger than 0.064 (or 10%
volumetric content) cease transport ([DF10]),
which is implemented as an infinite shear velocity threshold.

Roughness elements

The shear velocity threshold is updated based on the presence of
roughness elements following [RGL93]:

\[\begin{align}\begin{aligned}:label: shear-rough\\f_{u_{\mathrm{* th},R}} = \sqrt{(1 - m \cdot \sum_{k=k_0}^{n_k}{\hat{w}_k^{\mathrm{bed}}})
 (1 + \frac{m \beta}{\sigma} \cdot \sum_{k=k_0}^{n_k}{\hat{w}_k^{\mathrm{bed}}})}\end{aligned}\end{align} \]

by assuming:

\[\begin{align}\begin{aligned}:label: lambda-rough\\\lambda = \frac{\sum_{k=k_0}^{n_k}{\hat{w}_k^{\mathrm{bed}}}}{\sigma}\end{aligned}\end{align} \]

where \(f_{u_{\mathrm{* th},R}}\) [-] is a factor in Equation
(29), \(k_0\) is the sediment fraction index of
the smallest non-erodible fraction in current conditions and \(n_k\) is
the number of sediment fractions defined. The implementation is
discussed in detail in section ref{sec:roughness}.

Salt content

The shear velocity threshold is updated based on salt content
following [NE81]:

(32)\[f_{u_{\mathrm{* th}},S} = 1.03 \cdot \exp(0.1027 \cdot p_{\mathrm{s}})\]

where \(f_{u_{\mathrm{* th},S}}\) [-] is a factor in Equation
(29) and \(p_{\mathrm{s}}\) [-] is the salt
content [mg/g]. Currently, no model is implemented that predicts the
instantaneous salt content. The spatial varying salt content needs to
be specified by the user, for example through the BMI interface.

Bibliography

	vSimrunekvSejnavG98

	J. Šimůnek, M. Šejna, and M. Th. van Genuchten. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably- saturated media. International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, version 1.0. igwmc - tps - 70 edition, 1998. 186pp.

	Bag37a

	RA Bagnold. The size-grading of sand by wind. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pages 250–264, 1937.

	Bag37b(1,2)

	RA Bagnold. The transport of sand by wind. Geographical journal, pages 409–438, 1937.

	BMH98

	Andrew J. Baird, Travis Mason, and Diane P. Horn. Validation of a Boussinesq model of beach ground water behaviour. Marine Geology, 148(1-2):55–69, 1998. doi:10.1016/S0025-3227(98)00026-7 [https://doi.org/10.1016/S0025-3227(98)00026-7].

	Bel64

	P Y Belly. Sand movement by wind. Technical Report 1, U.S. Army Corps of Engineers CERC, 1964. 38 pp.

	BSDR19

	Laura B. Brakenhoff, Yvonne Smit, Jasper J.A. Donker, and Gerben Ruessink. Tide-induced variability in beach surface moisture: Observations and modelling. Earth Surface Processes and Landforms, 44(1):317–330, 2019. doi:10.1002/esp.4493 [https://doi.org/10.1002/esp.4493].

	dVvTdVvR+14(1,2,3,4)

	S de Vries, J S M van Thiel de Vries, L C van Rijn, S M Arens, and R Ranasinghe. Aeolian sediment transport in supply limited situations. Aeolian Research, 12:75–85, 2014. doi:10.1016/j.aeolia.2013.11.005 [https://doi.org/10.1016/j.aeolia.2013.11.005].

	DF10

	I Delgado-Fernandez. A review of the application of the fetch effect to modelling sand supply to coastal foredunes. Aeolian Research, 2:61–70, 2010. doi:10.1016/j.aeolia.2010.04.001 [https://doi.org/10.1016/j.aeolia.2010.04.001].

	KNH94

	H.Y. Kang, P. Nielsen, and D.J Hanslow. Watertable overheight due to wave runup on a sandy beach. In Coastal Engineering 1994, 2115–2124. 1994.

	Kin51

	C. A. M. King. Depth of disturbance of sand on sea beaches by waves. Journal of Sedimentary Petrology, 21(3):131–140, 1951. URL: http://archives.datapages.com/data/sepm/journals/v01-32/data/021/021003/pdfs/0131.pdf.

	MAROHare07(1,2)

	G Masselink, N Auger, P Russell, and T O’Hare. Short-term morphological change and sediment dynamics in the intertidal zone of a macrotidal beach. Sedimentology, 54:39–53, 2007. doi:10.1111/j.1365-3091.2006.00825.x [https://doi.org/10.1111/j.1365-3091.2006.00825.x].

	Mua74(1,2)

	Y Mualem. A Conceptual Model of Hysteresis. Water Resources Research, 10(3):514–520, 1974.

	NE81

	W G Nickling and M Ecclestone. The effects of soluble salts on the threshold shear velocity of fine sand. Sedimentology, 28:505–510, 1981.

	NDWE88

	P Nielsen, GA Davis, JM Winterbourne, and G Elias. Wave setup and the watertable in sandy beaches, Technical Report Technical Memo- randum 88/1, New South Wales Public Works Department Coastal Branch. Technical Report, -, 1988.

	Nie90

	Peter Nielsen. Tidal dynamics of the water table in beaches. Water Resources Research, 26(9):2127–2134, 1990. doi:10.1029/WR026i009p02127 [https://doi.org/10.1029/WR026i009p02127].

	Nie09

	Peter Nielsen. Coastal and estuarine processes. World Scientific Publishing Company, 2009.

	PHN13

	S. D. Peckham, E. W. H. Hutton, and B. Norris. A component-based approach to integrated modeling in the geosciences: the design of CSDMS. Computers and Geosciences, 53:3–12, 2013. doi:10.1016/j.cageo.2012.04.002 [https://doi.org/10.1016/j.cageo.2012.04.002].

	PT90

	K. Pye and H. Tsoar. Aeolian Sand and Sand Dunes. Unwin Hyman, London, 1990.

	RGE99(1,2)

	B. Raubenheimer, R. T. Guza, and Steve Elgar. Tidal water table fluctuations in a sandy ocean beach. Water Resources Research, 35(8):2313–2320, 1999. doi:10.1029/1999WR900105 [https://doi.org/10.1029/1999WR900105].

	RGL93(1,2,3,4)

	MR Raupach, DA Gillette, and JF Leys. The effect of roughness elements on wind erosion threshold. Journal of Geophysical Research: Atmospheres, 98(D2):3023–3029, 1993. doi:10.1029/92JD01922 [https://doi.org/10.1029/92JD01922].

	Sch14(1,2)

	Phillip P Schmutz. Investigation of Factors Controlling the Dynamics of Beach Surface Moisture. PhD thesis, Louisiana State University, 2014.

	Shu93(1,2)

	W J Shuttleworth. Evaporation. In D R Maidment, editor, Handbook of Hydrology, pages 4.1–4.53. McGraw-Hill, New York, 1993.

	SHHS06

	Hilary F. Stockdon, Rob A. Holman, Peter A. Howd, and Asbury H. Sallenger. Empirical parameterization of setup, swash, and runup. Coastal Engineering, 53(7):573–588, 2006. URL: https://www.sciencedirect.com/science/article/pii/S0378383906000044, doi:https://doi.org/10.1016/j.coastaleng.2005.12.005 [https://doi.org/https://doi.org/10.1016/j.coastaleng.2005.12.005].

	vG80

	M. Th van Genuchten. Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5):892–898, 1980. doi:10.2136/sssaj1980.03615995004400050002x [https://doi.org/10.2136/sssaj1980.03615995004400050002x].

	Wil71

	A. T. Williams. An analysis of some factors involved in the depth of disturbance of beach sand by waves. Marine Geology, 11(3):145–158, 1971. doi:10.1016/0025-3227(71)90003-X [https://doi.org/10.1016/0025-3227(71)90003-X].

	Delft3DFManual14

	Delft3D-FLOW Manual. Delft3D - 3D/2D modelling suite for integral water solutions - Hydro-Morphodynamics. Deltares, Delft, May 2014. Version 3.15.34158.

Numerical implementation

The numerical implementation of the equations presented in
Model description is explained here. The implementation is available as
Python package through the OpenEarth GitHub repository at:
http://www.github.com/openearth/aeolis-python/

Advection equation

The advection equation is implemented in two-dimensional form
following:

(33)\[\frac{\partial c}{\partial t} +
u_{z,\mathrm{x}} \frac{\partial c}{\partial x} +
u_{z,\mathrm{y}} \frac{\partial c}{\partial y} =
\frac{c_{\mathrm{sat}} - c}{T}\]

in which \(c\) [\(\mathrm{kg/m^2}\)] is the sediment mass per
unit area in the air, \(c_{\mathrm{sat}}\) [\(\mathrm{kg/m^2}\)] is the
maximum sediment mass in the air that is reached in case of
saturation, \(u_{z,\mathrm{x}}\) and \(u_{z,\mathrm{y}}\) are the x- and
y-component of the wind velocity at height \(z\) [m], \(T\) [s] is an
adaptation time scale, \(t\) [s] denotes time and \(x\) [m] and \(y\) [m]
denote cross-shore and alongshore distances respectively.

The formulation is discretized in different ways to allow for different types of simulations balancing accuracy vs. computational resources. The conservative method combined with an euler backward scheme (written by Prof. Rauwoens) is the current default for most simulations. Non-conservative methods end explicit Euler forward schemes are also available.

Default scheme – Conservative Euler Backward Implicit

The default numerical method assumes the advection scheme in a conservative form in combination with an euler backward scheme. This scheme is prepared to use a TVD method but this is not implemented yet (add footnote{Total Variance Diminishing, this is explained in the lecture notes by Zijlema p94})

The fluxes at the interface of the cells are defined used in the advection terms:

(34)\[\begin{split}\frac{c^{n+1}_{i,j,k} - c^n_{i,j,k}}{\Delta t} + \\
\frac{u_{\text{x},i+1/2,j} \cdot c^{n+1}_{i+1/2,j,k} - u_{\text{x},i-1/2,j} \cdot c^{n+1}_{i-1/2,j,k}}{\Delta x} + \\
\frac{u_{\text{y},i,j+1/2} \cdot c^{n+1}_{i,j+1/2,k} - u_{\text{y},i,j-1/2} \cdot c^{n+1}_{i,j-1/2,k}}{\Delta y} +
\\ = \\
\frac{\min(\hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k},m_{i.j.k} + c^{n+1}_{i,j,k}) - c^{n+1}_{i,j,k}}{T}\end{split}\]

In which \(n\) is the time step index, \(i\) and \(j\) are the cross-shore and alongshore spatial grid cell indices and \(k\) is the grain size fraction index. \(w\) [-] is the weighting factor used for the weighted addition of the saturated sediment concentrations over all grain size fractions. Note that u is spatially varying but has no temporal index. This is because u is a result of a separate wind solver and considered temporally invariant in the advection solver.

Now we use a correction algorithm where:

(35)\[c^{n+1}_{i,j,k} = c^{n+1 *}_{i,j,k} + \delta c_{i,j,k}\]

where \(\delta c_{i,j,k}\) is solved for and \(*\) denotes the previous iteration.

When now assuming an upwind scheme in space, we can derive 4 concentrations at the cell faces which are dependent on the velocity at the cell faces.

We assume in x direction:

\[\begin{split}c^{n+1}_{i+1/2,j,k} =
\begin{cases}
 c^{n+1 *}_{i,j,k} + \delta c_{i,j,k} & \text{if $u_{\text{x},i+1/2,j} > 0$,}\\
 c^{n+1 *}_{i+1,j,k} + \delta c_{i+1,j,k} & \text{if $u_{\text{x},i+1/2,j} < 0$.}
\end{cases}\end{split}\]

\[\begin{split}c^{n+1}_{i-1/2,j,k} =
\begin{cases}
 c^{n+1 *}_{i-1,j,k} + \delta c_{i-1,j,k} & \text{if $u_{\text{x},i-1/2,j} > 0$,}\\
 c^{n+1 *}_{i,j,k} + \delta c_{i,j,k} & \text{if $u_{\text{x},i-1/2,j} < 0$.}
\end{cases}\end{split}\]

and in y-direction:

\[\begin{split}c^{n+1}_{i,j+1/2,k} =
\begin{cases}
 c^{n+1 *}_{i,j,k} + \delta c_{i,j,k} & \text{if $u_{\text{y},i,j+1/2} > 0$,}\\
 c^{n+1 *}_{i,j+1,k} + \delta c_{i,j+1,k} & \text{if $u_{\text{y},i,j+1/2} < 0$.}
\end{cases}\end{split}\]

\[\begin{split}c^{n+1}_{i,j-1/2,k} =
\begin{cases}
 c^{n+1 *}_{i,j-1,k} + \delta c_{i,j-1,k} & \text{if $u_{\text{y},i,j-1/2} > 0$,}\\
 c^{n+1 *}_{i,j,k} + \delta c_{i,j,k} & \text{if $u_{\text{y},i,j-1/2} < 0$.}
\end{cases}\end{split}\]

Now we assume:

	\(\Gamma_x = 1\) if \(u_{\text{x},i+1/2,j,k} > 0\) and \(\Gamma_x = 0\) if \(u_{\text{x},i+1/2,j,k} \leq 0\)

	\(\Gamma_y = 1\) if \(u_{\text{y},i,j+1/2,k} > 0\) and \(\Gamma_x = 0\) if \(u_{\text{y},i,j+1/2,k} \leq 0\)

(We did not test if this works well with diverging and converging flows. We may need another term that describes the conditions at the negative cell faces if they are of opposite direction than the positive cell faces and vice versa)

Let’s continue for the moment so that

\[\begin{split}\begin{gathered}
\frac{c^{n+1 *}_{i,j,k} + \delta c_{i,j,k} - c^n_{i,j,k}}{\Delta t} + \\
\Gamma_x \cdot \frac{u_{\text{x},i+1/2,j} \cdot (c^{n+1 *}_{i,j,k} + \delta c_{i,j,k}) - u_{\text{x},i-1/2,j} \cdot (c^{n+1 *}_{i-1,j,k} + \delta c_{i-1,j,k})}{\Delta x} + \\
(1-\Gamma_x) \cdot \frac{u_{\text{x},i+1/2,j} \cdot (c^{n+1 *}_{i+1,j,k} + \delta c_{i+1,j,k}) - u_{\text{x},i-1/2,j} \cdot (c^{n+1 *}_{i,j,k} + \delta c_{i,j,k})}{\Delta x} + \\
\Gamma_y \cdot \frac{u_{\text{y},i,j+1/2} \cdot (c^{n+1 *}_{i,j,k} + \delta c_{i,j,k}) - u_{\text{y},i,j-1/2} \cdot (c^{n+1 *}_{i,j-1,k} + \delta c_{i,j-1,k})}{\Delta y} + \\
(1-\Gamma_y) \cdot \frac{u_{\text{y},i,j+1/2} \cdot (c^{n+1 *}_{i,j+1,k} + \delta c_{i,j+1,k}) - u_{\text{y},i,j-1/2} \cdot (c^{n+1 *}_{i,j,k} + \delta c_{i,j,k})}{\Delta y} +
\\ = \\
\frac{\min(\hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k},m_{i,j,k}+c^{n+1 *}_{i,j,k} + \xcancel{\delta c_{i,j,k}}) - c^{n+1 *}_{i,j,k} + \delta c_{i,j,k}}{T}
\end{gathered}\end{split}\]

(note that the above does not take converging and diverging flows into account, also \(\delta c_{i,j,k}\) at the right hand side in the “min” brackets is difficult to solve for. In the code, this term is neglected which may cause some inaccuracy when calculating pickup. Although mass continuity is corrected for in the implicit scheme when calculating pickup using equation ???)

Now we simplify:

\[\begin{split}\begin{gathered}
 (\frac{\Delta x \Delta y}{\Delta t} + \Gamma_x\Delta y \cdot u_{\text{x},i+1/2,j} - (1-\Gamma_x)\Delta y \cdot u_{\text{x},i-1/2,j} + \Gamma_y\Delta x \cdot u_{\text{y},i,j+1/2}\\ - (1-\Gamma_y)\Delta x \cdot u_{\text{y},i,j-1/2}+\frac{\Delta x \Delta y}{T_s})\cdot \delta c_{i,j,k}\\
 -(\Gamma_x\Delta y \cdot u_{\text{x},i-1/2,j})\cdot \delta c_{i-1,j,k}\\
 +((1-\Gamma_x)\Delta y \cdot u_{\text{x},i+1/2,j})\cdot \delta c_{i+1,j,k}\\
 -(\Gamma_y\Delta x \cdot u_{\text{y},i,j-1/2})\cdot \delta c_{i,j-1,k}\\
 + ((1-\Gamma_y)\Delta x \cdot u_{\text{y},i,j+1/2})\cdot \delta c_{i,j+1,k}\\
\end{gathered}\end{split}\]

or

\[\begin{split}\begin{gathered}
 A0 \cdot \delta c_{i,j,k}
 + A\text{m1} \cdot \delta c_{i-1,j,k}
 + A\text{p1} \cdot \delta c_{i+1,j,k}\\
 + A\text{mx} \cdot \delta c_{i,j-1,k}
 + A\text{px} \cdot \delta c_{i,j+1,k} = y_{i,j,k}
 \label{eq:lin}
\end{gathered}\end{split}\]

or the linear system of equations in general form:

(36)\[A \cdot \delta c_{i,j,k} = y_{i,j,k}\]

Where \(A\) is a 3-dimensional sparse matrix that is compiled using the matrix diagonals (\(A0, Am1, Ap1, Amx, Apx\)) which are defined as:

\[\begin{split}\begin{aligned}
A0 = & +\frac{\Delta x \Delta y}{\Delta t} \\
 & +\frac{\Delta x \Delta y}{T_s} \\
 & - (1-\Gamma_x)\Delta y \cdot u_{\text{x},i-1/2,j} \\
 & + \Gamma_x\Delta y \cdot u_{\text{x},i+1/2,j} \\
 & - (1-\Gamma_y)\Delta x \cdot u_{\text{y},i,j-1/2} \\
 & + \Gamma_y\Delta x \cdot u_{\text{y},i,j+1/2} \\
\end{aligned}\end{split}\]

and

\[A\text{m}1 = -\Gamma_x\Delta y \cdot u_{\text{x},i-1/2,j}\]

and

\[A\text{p}1 = (1-\Gamma_x)\Delta y \cdot u_{\text{x},i+1/2,j}\]

and

\[A\text{mx} = -\Gamma_y\Delta x \cdot u_{\text{y},i,j-1/2}\]

and

\[A\text{px} = (1-\Gamma_y)\Delta x \cdot u_{\text{y},i,j+1/2}\]

Let’s go towards the RHS

\[\begin{split}\begin{aligned}
 y_{i,j,k} = & - \frac{\Delta x \Delta y}{\Delta t}(c^{n+1 *}_{i,j,k}-c^{n}_{i,j,k}) \\
 & + \frac{\Delta x \Delta y}{T_s}(\min(\hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k},m_{i,j,k} + c^{n+1 *}_{i,j,k}) - c^{n+1 *}_{i,j,k}) \\
 & + \Delta y \cdot u_{\text{x},i-1/2,j} \cdot
 (\Gamma_x \cdot c^{n+1 *}_{i-1,j,k} + (1-\Gamma_x) c^{n+1 *}_{i,j,k})\\
 & - \Delta y \cdot u_{\text{x},i+1/2,j} \cdot (\Gamma_x \cdot c^{n+1 *}_{i,j,k} + (1-\Gamma_x) c^{n+1 *}_{i+1,j,k})\\
 & + \Delta x \cdot u_{\text{y},i,j-1/2} \cdot (\Gamma_y \cdot c^{n+1 *}_{i,j-1,k} + (1-\Gamma_y) c^{n+1 *}_{i,j,k})\\
 & - \Delta x \cdot u_{\text{y},i,j+1/2} \cdot (\Gamma_y \cdot c^{n+1 *}_{i,j,k} + (1-\Gamma_y) c^{n+1 *}_{i,j+1,k})\\
\end{aligned}\end{split}\]

in the python code some intermediate variable is defined to make it easier to shift indexes

\[\text{Ctxfs} =(\Gamma_x \cdot c^{n+1 *}_{i,j,k} + (1-\Gamma_x) c^{n+1 *}_{i+1,j,k})\]

and

\[\text{Ctxfn} =(\Gamma_y \cdot c^{n+1 *}_{i,j,k} + (1-\Gamma_y) c^{n+1 *}_{i,j+1,k})\]

also Erosion and deposition are defined using seperate variables.

\[D_{i,j,k}= \frac{\Delta x \Delta y}{T_s}c^{n+1 *}_{i,j,k}\]

and

\[A_{i,j,k}= \frac{\Delta x \Delta y}{T_s}m_{i,j,k} + D_{i,j,k}\]

and

\[U_{i,j,k}= \frac{\Delta x \Delta y}{T_s}\hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k}\]

and

\[E_{i,j,k} = \min(U_{i,j,k},A_{i,j,k})\]

After solving equation \(\delta c_{i,j,k}\) using (36), \(c^{n+1}_{i,j,k}\) can be calculated using equation (35).

Also, the pickup per grid cell can be calculated using:

\[\text{pickup} = \frac{\hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k}- c^{n+1}_{i,j,k}}{T_s}\Delta t
 \label{eq:pickup}\]

note that this is only valid when using an Euler backward scheme.

Solving the Linear System of Equations

The linear system of equations can be elaborated :

(37)\[\begin{split}\left[
 \begin{array}{cccccc}
 A^0_1 & A^{1}_1 & \textbf{0} & \cdots & \textbf{0} & A^{n_{\mathrm{y}}+1}_1 \\
 A^{-1}_2 & A^0_2 & \ddots & \ddots & & \textbf{0} \\
 \textbf{0} & \ddots & \ddots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \textbf{0} \\
 \textbf{0} & & \ddots & \ddots & A^0_{n_{\mathrm{y}}} & A^1_{n_{\mathrm{y}}} \\
 A^{-n_{\mathrm{y}}-1}_{n_{\mathrm{y}}+1} & \textbf{0} & \cdots & \textbf{0} & A^{-1}_{n_{\mathrm{y}}+1} & A^0_{n_{\mathrm{y}}+1} \\
 \end{array}
\right] \left[
 \begin{array}{c}
 \vec{\delta c}_1 \\ \vec{\delta c}_2 \\ \vdots \\ \vdots \\ \vec{\delta c}_{n_{\mathrm{y}}} \\ \vec{\delta c}_{n_{\mathrm{y}}+1} \\
 \end{array}
\right] = \left[
 \begin{array}{c}
 \vec{y}_1 \\ \vec{y}_2 \\ \vdots \\ \vdots \\ \vec{y}_{n_{\mathrm{y}}} \\ \vec{y}_{n_{\mathrm{y}}+1} \\
 \end{array}
\right]\end{split}\]

where each item in the matrix is again a matrix \(A^l_j\) and
each item in the vectors is again a vector \(\vec{\delta c}_j\) and
\(\vec{y}_j\) respectively. The form of the matrix \(A^l_j\) depends on
the diagonal index \(l\) and reads:

(38)\[\begin{split}A^0_j =
\left[
 \begin{array}{ccccccc}
 0 & 0 & 0 & 0
 & \cdots & \cdots & 0 \\
 a^{0,-1}_{2,j} & a^{0,0}_{2,j} & a^{0,1}_{2,j} & \ddots
 & & & \vdots \\
 0 & a^{0,-1}_{3,j} & a^{0,0}_{3,j} & a^{0,1}_{3,j}
 & \ddots & & \vdots \\
 \vdots & \ddots & \ddots & \ddots
 & \ddots & \ddots & \vdots \\
 \vdots & & \ddots & a^{0,-1}_{n_{\mathrm{x}}-1,j}
 & a^{0,0}_{n_{\mathrm{x}}-1,j} & a^{0,1}_{n_{\mathrm{x}}-1,j} & 0 \\
 \vdots & & & 0
 & a^{0,-1}_{n_{\mathrm{x}},j} & a^{0,0}_{n_{\mathrm{x}},j} & a^{0,1}_{n_{\mathrm{x}},j} \\
 0 & \cdots & \cdots & 0
 & 1 & -2 & 1 \\
 \end{array}
\right]\end{split}\]

for \(l = 0\) and

(39)\[\begin{split}A^l_j =
\left[
 \begin{array}{ccccccc}
 1 & 0 & \cdots & \cdots
 & \cdots & \cdots & 0 \\
 0 & a^{l,0}_{2,j} & \ddots &
 & & & \vdots \\
 \vdots & \ddots & a^{l,0}_{3,j} & \ddots
 & & & \vdots \\
 \vdots & & \ddots & \ddots
 & \ddots & & \vdots \\
 \vdots & & & \ddots
 & a^{l,0}_{n_{\mathrm{x}}-1,j} & \ddots & \vdots \\
 \vdots & & &
 & \ddots & a^{l,0}_{n_{\mathrm{x}},j} & 0 \\
 0 & \cdots & \cdots & \cdots
 & \cdots & 0 & 1 \\
 \end{array}
\right]\end{split}\]

for \(l \neq 0\). The vectors \(\vec{\delta c}_{j,k}\) and \(\vec{y}_{j,k}\)
read:

(40)\[\begin{split}\begin{array}{rclrcl}
 \vec{\delta c}_{j,k} &=& \left[
 \begin{array}{c}
 \delta c^{n+1}_{1,j,k} \\
 \delta c^{n+1}_{2,j,k} \\
 \delta c^{n+1}_{3,j,k} \\
 \vdots \\
 \delta c^{n+1}_{n_{\mathrm{x}}-1,j,k} \\
 \delta c^{n+1}_{n_{\mathrm{x}},j,k} \\
 \delta c^{n+1}_{n_{\mathrm{x}}+1,j,k} \\
 \end{array}
 \right] & ~ \mathrm{and} ~
 \vec{y}_{j,k} &=& \left[
 \begin{array}{c}
 0 \\
 y^n_{2,j,k} \\
 y^n_{3,j,k} \\
 \vdots \\
 y^n_{n_{\mathrm{x}}-1,j,k} \\
 y^n_{n_{\mathrm{x}},j,k} \\
 0 \\
 \end{array}
 \right] \\
 \end{array}\end{split}\]

\(n_{\mathrm{x}}\) and \(n_{\mathrm{y}}\) denote the number of
spatial grid cells in x- and y-direction.

Iterations to solve for multiple fractions

The linear system defined in Equation (37) is solved by a
sparse matrix solver for each sediment fraction separately in
ascending order of grain size. Initially, the weights
\(\hat{w}^{n+1}_{i,j,k}\) are chosen according to the grain size
distribution in the bed and the air. The sediment availability
constraint is checked after each solve:

(41)\[m_{\mathrm{a}} \geq \frac{\hat{w}^{n+1}_{i,j,k} c^{n+1}_{\mathrm{sat},i,j,k} - c^{n+1}_{i,j,k}}{T} \Delta t^n\]

If the constraint if violated, a new estimate for the weights
is back-calculated following:

(42)\[\hat{w}^{n+1}_{i,j,k} = \frac{ c^{n+1}_{i,j,k} + m_{\mathrm{a}} \frac{T}{\Delta t^n} }{c^{n+1}_{\mathrm{sat},i,j,k}}\]

The system is solved again using the new weights. This
procedure is repeated until a weight is found that does not violate
the sediment availability constraint. If the time step is not too
large, the procedure typically converges in only a few
iterations. Finally, the weights of the larger grains are increased
proportionally as to ensure that the sum of all weights remains
unity. If no larger grains are defined, not enough sediment is
available for transport and the grid cell is truly
availability-limited. This situation should only occur occasionally as
the weights in the next time step are computed based on the new bed
composition and thus will be skewed towards the large fractions. If
the situation occurs regularly, the time step is chosen too large
compared to the rate of armoring.

Euler Schemes in non-conservative form

Early model results relied on Euler schemes in a non conservative form. This allowed for a relatively easy implementation but did not guarantee mass conservation. In version 2 of AEOLIS the conservative form became the default. However, some users still use the older scheme.

The formulation is discretized following a first order upwind scheme
assuming that the wind velocity \(u_z\) is positive in both
x-direction and y-direction:

(43)\[\begin{split}\frac{c^{n+1}_{i,j,k} - c^n_{i,j,k}}{\Delta t^n} +
u^n_{z,\mathrm{x}} \frac{c^n_{i+1,j,k} - c^n_{i,j,k}}{\Delta x_{i,j}} +
u^n_{z,\mathrm{y}} \frac{c^n_{i,j+1,k} - c^n_{i,j,k}}{\Delta y_{i,j}} \\ =
\frac{\hat{w}^n_{i,j,k} \cdot c^n_{\mathrm{sat},i,j,k} - c^n_{i,j,k}}{T}\end{split}\]

in which \(n\) is the time step index, \(i\) and \(j\) are
the cross-shore and alongshore spatial grid cell indices and \(k\)
is the grain size fraction index. \(w\) [-] is the weighting
factor used for the weighted addition of the saturated sediment
concentrations over all grain size fractions.

The discretization can be generalized for any wind direction as:

(44)\[\begin{split}\frac{c^{n+1}_{i,j,k} - c^n_{i,j,k}}{\Delta t^n} +
u^n_{z,\mathrm{x+}} c^n_{i,j,k,\mathrm{x+}} +
u^n_{z,\mathrm{y+}} c^n_{i,j,k,\mathrm{y+}} \\ +
u^n_{z,\mathrm{x-}} c^n_{i,j,k,\mathrm{x-}} +
u^n_{z,\mathrm{y-}} c^n_{i,j,k,\mathrm{y-}} =
\frac{\hat{w}^n_{i,j,k} \cdot c^n_{\mathrm{sat},i,j,k} - c^n_{i,j,k}}{T}\end{split}\]

in which:

(45)\[\begin{split}\begin{array}{rclcrcl}
 u^n_{z,\mathrm{x+}} &=& \max(0, u^n_{z,\mathrm{x}}) &;& u^n_{z,\mathrm{y+}} &=& \max(0, u^n_{z,\mathrm{y}}) \\
 u^n_{z,\mathrm{x-}} &=& \min(0, u^n_{z,\mathrm{x}}) &;& u^n_{z,\mathrm{y-}} &=& \min(0, u^n_{z,\mathrm{y}}) \\
\end{array}\end{split}\]

and

(46)\[\begin{split}\begin{array}{rclcrcl}
 c^n_{i,j,k,\mathrm{x+}} &=& \frac{c^n_{i+1,j,k} - c^n_{i,j,k}}{\Delta x} &;&
 c^n_{i,j,k,\mathrm{y+}} &=& \frac{c^n_{i,j+1,k} - c^n_{i,j,k}}{\Delta y} \\
 c^n_{i,j,k,\mathrm{x-}} &=& \frac{c^n_{i,j,k} - c^n_{i-1,j,k}}{\Delta x} &;&
 c^n_{i,j,k,\mathrm{y-}} &=& \frac{c^n_{i,j,k} - c^n_{i,j-1,k}}{\Delta y} \\
\end{array}\end{split}\]

Equation (44) is explicit in
time and adheres to the Courant-Friedrich-Lewis (CFL) condition for
numerical stability. Alternatively, the advection equation can be
discretized implicitly in time for unconditional stability:

(47)\[\begin{split}\frac{c^{n+1}_{i,j,k} - c^n_{i,j,k}}{\Delta t^n} +
u^{n+1}_{z,\mathrm{x+}} c^{n+1}_{i,j,k,\mathrm{x+}} +
u^{n+1}_{z,\mathrm{y+}} c^{n+1}_{i,j,k,\mathrm{y+}} \\ +
u^{n+1}_{z,\mathrm{x-}} c^{n+1}_{i,j,k,\mathrm{x-}} +
u^{n+1}_{z,\mathrm{y-}} c^{n+1}_{i,j,k,\mathrm{y-}} =
\frac{\hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k} - c^{n+1}_{i,j,k}}{T}\end{split}\]

Equation (44) and
:eq:apx-implicit-generalized` can be rewritten as:

(48)\[\begin{split}c^{n+1}_{i,j,k} = c^n_{i,j,k} - \Delta t^n \left[
u^n_{z,\mathrm{x+}} c^n_{i,j,k,\mathrm{x+}} +
u^n_{z,\mathrm{y+}} c^n_{i,j,k,\mathrm{y+}} \phantom{\frac{c^n_{i,j,k}}{T}} \right. \\ + \left.
u^n_{z,\mathrm{x-}} c^n_{i,j,k,\mathrm{x-}} +
u^n_{z,\mathrm{y-}} c^n_{i,j,k,\mathrm{y-}} +
\frac{\hat{w}^n_{i,j,k} \cdot c^n_{\mathrm{sat},i,j,k} - c^n_{i,j,k}}{T} \right]\end{split}\]

and

(49)\[\begin{split}c^{n+1}_{i,j,k} + \Delta t^n \left[
u^{n+1}_{z,\mathrm{x+}} c^{n+1}_{i,j,k,\mathrm{x+}} +
u^{n+1}_{z,\mathrm{y+}} c^{n+1}_{i,j,k,\mathrm{y+}} \phantom{\frac{c^{n+1}_{i,j,k}}{T}} \right. \\ + \left.
u^{n+1}_{z,\mathrm{x-}} c^{n+1}_{i,j,k,\mathrm{x-}} +
u^{n+1}_{z,\mathrm{y-}} c^{n+1}_{i,j,k,\mathrm{y-}} +
\frac{\hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k} - c^{n+1}_{i,j,k}}{T} \right] = c^n_{i,j,k}\end{split}\]

and combined using a weighted average:

(50)\[\begin{split}c^{n+1}_{i,j,k} + \Gamma \Delta t^n \left[
u^{n+1}_{z,\mathrm{x+}} c^{n+1}_{i,j,k,\mathrm{x+}} +
u^{n+1}_{z,\mathrm{y+}} c^{n+1}_{i,j,k,\mathrm{y+}} \phantom{\frac{c^{n+1}_{i,j,k}}{T}} \right. \\ + \left.
u^{n+1}_{z,\mathrm{x-}} c^{n+1}_{i,j,k,\mathrm{x-}} +
u^{n+1}_{z,\mathrm{y-}} c^{n+1}_{i,j,k,\mathrm{y-}} +
\frac{\hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k} - c^{n+1}_{i,j,k}}{T} \right] \\ =
c^n_{i,j,k} - (1 - \Gamma) \Delta t^n \left[
u^n_{z,\mathrm{x+}} c^n_{i,j,k,\mathrm{x+}} +
u^n_{z,\mathrm{y+}} c^n_{i,j,k,\mathrm{y+}} \phantom{\frac{c^n_{i,j,k}}{T}} \right. \\ + \left.
u^n_{z,\mathrm{x-}} c^n_{i,j,k,\mathrm{x-}} +
u^n_{z,\mathrm{y-}} c^n_{i,j,k,\mathrm{y-}} +
\frac{\hat{w}^n_{i,j,k} \cdot c^n_{\mathrm{sat},i,j,k} - c^n_{i,j,k}}{T} \right]\end{split}\]

in which \(\Gamma\) is a weight that ranges from 0 – 1 and
determines the implicitness of the scheme. The scheme is implicit with
\(\Gamma = 0\), explicit with \(\Gamma = 1\) and semi-implicit
otherwise. \(\Gamma = 0.5\) results in the semi-implicit Crank-Nicolson
scheme.

Equation (46) is back-substituted in Equation
(50):

(51)\[\begin{split}c^{n+1}_{i,j,k} + \Gamma \Delta t^n \left[
u^{n+1}_{z,\mathrm{x+}} \frac{c^{n+1}_{i+1,j,k} - c^{n+1}_{i,j,k}}{\Delta x} +
u^{n+1}_{z,\mathrm{y+}} \frac{c^{n+1}_{i,j+1,k} - c^{n+1}_{i,j,k}}{\Delta y} \right. \\ + \left.
u^{n+1}_{z,\mathrm{x-}} \frac{c^{n+1}_{i,j,k} - c^{n+1}_{i-1,j,k}}{\Delta x} +
u^{n+1}_{z,\mathrm{y-}} \frac{c^{n+1}_{i,j,k} - c^{n+1}_{i,j-1,k}}{\Delta y} +
\frac{\hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k} - c^{n+1}_{i,j,k}}{T} \right] \\ =
c^n_{i,j,k} - (1 - \Gamma) \Delta t^n \left[
u^n_{z,\mathrm{x+}} \frac{c^n_{i+1,j,k} - c^n_{i,j,k}}{\Delta x} +
u^n_{z,\mathrm{y+}} \frac{c^n_{i,j+1,k} - c^n_{i,j,k}}{\Delta y} \right. \\ + \left.
u^n_{z,\mathrm{x-}} \frac{c^n_{i,j,k} - c^n_{i-1,j,k}}{\Delta x} +
u^n_{z,\mathrm{y-}} \frac{c^n_{i,j,k} - c^n_{i,j-1,k}}{\Delta y} +
\frac{\hat{w}^n_{i,j,k} \cdot c^n_{\mathrm{sat},i,j,k} - c^n_{i,j,k}}{T} \right]\end{split}\]

and rewritten:

(52)\[\begin{split}\left[1 - \Gamma \left(
 u^{n+1}_{z,\mathrm{x+}} \frac{\Delta t^n}{\Delta x} +
 u^{n+1}_{z,\mathrm{y+}} \frac{\Delta t^n}{\Delta y} -
 u^{n+1}_{z,\mathrm{x-}} \frac{\Delta t^n}{\Delta x} -
 u^{n+1}_{z,\mathrm{y-}} \frac{\Delta t^n}{\Delta y} +
 \frac{\Delta t^n}{T}
 \right)
\right] c^{n+1}_{i,j,k} \\ +
\Gamma \left(
 u^{n+1}_{z,\mathrm{x+}} \frac{\Delta t^n}{\Delta x} c^{n+1}_{i+1,j,k} +
 u^{n+1}_{z,\mathrm{y+}} \frac{\Delta t^n}{\Delta y} c^{n+1}_{i,j+1,k} - %\right. \\ - \left.
 u^{n+1}_{z,\mathrm{x-}} \frac{\Delta t^n}{\Delta x} c^{n+1}_{i-1,j,k} -
 u^{n+1}_{z,\mathrm{y-}} \frac{\Delta t^n}{\Delta y} c^{n+1}_{i,j-1,k}
\right) \\ =
\left[1 + (1 - \Gamma) \left(
 u^n_{z,\mathrm{x+}} \frac{\Delta t^n}{\Delta x} +
 u^n_{z,\mathrm{y+}} \frac{\Delta t^n}{\Delta y} -
 u^n_{z,\mathrm{x-}} \frac{\Delta t^n}{\Delta x} -
 u^n_{z,\mathrm{y-}} \frac{\Delta t^n}{\Delta y} +
 \frac{\Delta t^n}{T}
 \right)
\right] c^n_{i,j,k} \\ +
(1 - \Gamma) \left(
 u^n_{z,\mathrm{x+}} \frac{\Delta t^n}{\Delta x} c^n_{i+1,j,k} +
 u^n_{z,\mathrm{y+}} \frac{\Delta t^n}{\Delta y} c^n_{i,j+1,k} - %\right. \\ - \left.
 u^n_{z,\mathrm{x-}} \frac{\Delta t^n}{\Delta x} c^n_{i-1,j,k} -
 u^n_{z,\mathrm{y-}} \frac{\Delta t^n}{\Delta y} c^n_{i,j-1,k}
\right) \\ -
\Gamma \hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k} \frac{\Delta t^n}{T} -
(1 - \Gamma) \hat{w}^n_{i,j,k} \cdot c^n_{\mathrm{sat},i,j,k} \frac{\Delta t^n}{T}\end{split}\]

and simplified:

(53)\[a^{0,0}_{i,j} c^{n+1}_{i,j,k} +
a^{1,0}_{i,j} c^{n+1}_{i+1,j,k} +
a^{0,1}_{i,j} c^{n+1}_{i,j+1,k} -
a^{-1,0}_{i,j} c^{n+1}_{i-1,j,k} -
a^{0,-1}_{i,j} c^{n+1}_{i,j-1,k} = y_{i,j,k}\]

where the implicit coefficients are defined as:

(54)\[\begin{split}\begin{array}{rclcrcl}
 a^{0,0}_{i,j} &=& \left[1 - \Gamma \left(
 u^{n+1}_{z,\mathrm{x+}} \frac{\Delta t^n}{\Delta x} +
 u^{n+1}_{z,\mathrm{y+}} \frac{\Delta t^n}{\Delta y} -
 u^{n+1}_{z,\mathrm{x-}} \frac{\Delta t^n}{\Delta x} -
 u^{n+1}_{z,\mathrm{y-}} \frac{\Delta t^n}{\Delta y} +
 \frac{\Delta t^n}{T}
 \right) \right] \\
 a^{1,0}_{i,j} &=& \Gamma u^{n+1}_{z,\mathrm{x+}} \frac{\Delta t^n}{\Delta x} \\
 a^{0,1}_{i,j} &=& \Gamma u^{n+1}_{z,\mathrm{y+}} \frac{\Delta t^n}{\Delta y} \\
 a^{-1,0}_{i,j} &=& \Gamma u^{n+1}_{z,\mathrm{x-}} \frac{\Delta t^n}{\Delta x} \\
 a^{0,-1}_{i,j} &=& \Gamma u^{n+1}_{z,\mathrm{y-}} \frac{\Delta t^n}{\Delta y} \\
\end{array}\end{split}\]

and the explicit right-hand side as:

(55)\[\begin{split}y^n_{i,j,k} = \left[1 + (1 - \Gamma) \left(
 u^n_{z,\mathrm{x+}} \frac{\Delta t^n}{\Delta x} +
 u^n_{z,\mathrm{y+}} \frac{\Delta t^n}{\Delta y} -
 u^n_{z,\mathrm{x-}} \frac{\Delta t^n}{\Delta x} -
 u^n_{z,\mathrm{y-}} \frac{\Delta t^n}{\Delta y} +
 \frac{\Delta t^n}{T}
 \right)
\right] c^n_{i,j,k} \\ +
(1 - \Gamma) \left(
 u^n_{z,\mathrm{x+}} \frac{\Delta t^n}{\Delta x} c^n_{i+1,j,k} +
 u^n_{z,\mathrm{y+}} \frac{\Delta t^n}{\Delta y} c^n_{i,j+1,k} -
 u^n_{z,\mathrm{x-}} \frac{\Delta t^n}{\Delta x} c^n_{i-1,j,k} -
 u^n_{z,\mathrm{y-}} \frac{\Delta t^n}{\Delta y} c^n_{i,j-1,k}
\right) \\ -
\Gamma \hat{w}^{n+1}_{i,j,k} \cdot c^{n+1}_{\mathrm{sat},i,j,k} \frac{\Delta t^n}{T} -
(1 - \Gamma) \hat{w}^n_{i,j,k} \cdot c^n_{\mathrm{sat},i,j,k} \frac{\Delta t^n}{T}\end{split}\]

The offshore boundary is defined to be zero-flux, the
onshore boundary has a constant transport gradient and the lateral
boundaries are circular:

(56)\[\begin{split}\begin{array}{rclcrcl}
 c^{n+1}_{1,j,k} &=& 0 \\
 c^{n+1}_{n_{\mathrm{x}}+1,j,k} &=& 2 c^{n+1}_{n_{\mathrm{x}},j,k} - c^{n+1}_{n_{\mathrm{x}}-1,j,k} \\
 c^{n+1}_{i,1,k} &=& c^{n+1}_{i,n_{\mathrm{y}}+1,k} \\
 c^{n+1}_{i,n_{\mathrm{y}}+1,k} &=& c^{n+1}_{i,1,k} \\
\end{array}\end{split}\]

Shear stress perturbation for non-perpendicular wind directions

The shear stress perturbation 𝛿𝜏 is estimated following the analytical description of the influence of alow and smooth hill in the wind profile by Weng et al. (1991). The perturbation is given by the Fouriertransformed components of the shear stress perturbation in the unperturbed wind direction which are the functions 𝛿𝜏𝑥(𝑘) and 𝛿𝜏𝑦(𝑘). The x-direction is defined by the direction of the wind velocity 𝑣0 on a flat bed, while the y direction is then the transverse.

As a result, the perturbation theory can only estimate the shear stress induced by the morphology-wind interaction in parallel direction of wind. Therefore, model simulations were, up to now, limited to input wind directions parallel to the cross­shore axis of the grid.

To overcome this limitation and to allow for modelling directional winds, an overlaying computational grid is introduced in AeoLiS, which rotates with the changing wind direction per time step. By doing this, the shear stresses are always estimated in the positive x-direction of the computational grid. The following steps are executed for each time step:

	Create a computational grid alligned with the wind direction (set_computational_grid)

	Add and fill buffer around the original grid

3. Populate computation grid by rotating it to the current wind direction and interpolate the original
topography on it. Additionally, edges around
4. Compute the morphology-wind induced shear stress by using the perturbation theory
5. Add the only wind induced wind shear stresses to the computational grid
6. Rotate both the grids and the total shear stress results in opposite direction
7. Interpolate the total shear stress results from the computational grid to the original grid
8. Rotate the wind shear stress results and the original grid back to the original orientation
Note: the extra rotations in the last two steps are necessary as a simplified, but faster in terms of
computational time, interpolation method is used.

Boussinesq groundwater equation

The Boussinesq equation is solved numerically with a central finite difference
method in space and a fourth-order Runge-Kutta integration technique in time:

(57)\[f(\eta) = \frac{K}{{{n_e}}}\left[{D\underbrace {\frac{{{\partial ^2}\eta }}{{\partial {x^2}}}}_a + \underbrace {\frac{\partial }{{\partial x}}\underbrace {\left\{ {\eta \frac{{\partial \eta }}{{\partial x}}} \right\}}_b}_c} \right]\]

The Runge-Kutta time-stepping, where \(\Delta t\) is the length of the timestep, is defined as,

(58)\[\begin{split}\begin{gathered}
\eta _i^{t + 1} = \eta _i^t + \frac{{\Delta t}}{6}\left({{f_1} + 2{f_2} + 2{f_3} + {f_4}} \right) \hfill \\
{f_1} = f(\eta _i^t) \hfill \\
{f_2} = f\left({\eta _i^t + \frac{{\Delta t}}{2}{f_1}} \right) \hfill \\
{f_3} = f\left({\eta _i^t + \frac{{\Delta t}}{2}{f_2}} \right) \hfill \\
{f_4} = f\left({\eta _i^t + \Delta t{f_3}} \right) \hfill \\
\end{gathered}\end{split}\]

where, \(i\) is the grid cell in x-direction and \(t\) is the timestep. The central difference solution to \(f(\eta)\) is obtained through discretisation of the Boussinesq equation,

(59)\[{a_i} = \frac{{\eta _{i + 1}^{} - 2\eta _i^{} + \eta _{i - 1}^{}}}{{{{(\Delta x)}^2}}}\]

\[{b_i} = \frac{{\eta _i^{}\left({\eta _{i + 1}^{} - \eta _{i - 1}^{}} \right)}}{{\Delta x}}\]

\[{c_i} = \frac{{\left({b_{i + 1}^{} - b_{i - 1}^{}} \right)}}{{\Delta x}}\]

The seaward boundary condition is defined as the still water level plus the wave setup .
If the groundwater elevation is larger than the bed elevation, there is a seepage face,
and the groundwater elevation is set equal to the bed elevation. On the landward boundary,
a no-flow condition, \(\frac{{\partial \eta }}{{\partial t}} = 0\) (Neumann condition), or constant head, \(\eta = constant\) (Dirichlet condition), is prescribed.

Basic Model Interface (BMI)

A Basic Model Interface (BMI, [PHN13]) is implemented
that allows interaction with the model during run time. The model can
be implemented as a library within a larger framework as the interface
exposes the initialization, finalization and time stepping
routines. As a convenience functionality the current implementation
supports the specification of a callback function. The callback
function is called at the start of each time step and can be used to
exchange data with the model, e.g. update the topography from
measurements.

An example of a callback function, that is referenced in the model
input file or through the model command-line options as
callback.py:update, is:

import numpy as np

def update(model):
 val = model.get_var('zb')
 val_new = val.copy()
 val_new[:,:] = np.loadtxt('measured_topography.txt')
 model.set_var('zb', val_new)

Bibliography

	PHN13

	S. D. Peckham, E. W. H. Hutton, and B. Norris. A component-based approach to integrated modeling in the geosciences: the design of CSDMS. Computers and Geosciences, 53:3–12, 2013. doi:10.1016/j.cageo.2012.04.002 [https://doi.org/10.1016/j.cageo.2012.04.002].

Source code documentation

Use of documentation

Here you can find the documentation with direct links to the actual AeoLiS code. You can click on the green [source] button next to the classes and modules below to access the specific source code. You can use ctr-f to look for a specific functionality or variable. It still may be a bit difficult to browse through, in addition you can find an overview of all module code here [https://aeolis.readthedocs.io/en/latest/_modules/index.html]

Model classes

The AeoLiS model is based on two main model classes:
AeoLiS and
AeoLiSRunner. The former is the actual,
low-level, BMI-compatible class that implements the basic model
functions and numerical schemes. The latter is a convenience class
that implements a time loop, netCDF4 output, a progress indicator and
a callback function that allows the used to interact with the model
during runtime.

The additional WindGenerator class to generate
realistic wind time series is available from the same module.

AeoLiS

	
class model.AeoLiS(configfile)

	AeoLiS model class

AeoLiS is a process-based model for simulating supply-limited
aeolian sediment transport. This model class is compatible with
the Basic Model Interface (BMI) and provides basic model
operations, like initialization, time stepping, finalization and
data exchange. For higher level operations, like a progress
indicator and netCDF4 output is refered to the AeoLiS model
runner class, see AeoLiSRunner.

Examples

>>> with AeoLiS(configfile='aeolis.txt') as model:
>>> while model.get_current_time() <= model.get_end_time():
>>> model.update()

>>> model = AeoLiS(configfile='aeolis.txt')
>>> model.initialize()
>>> zb = model.get_var('zb')
>>> model.set_var('zb', zb + 1)
>>> for i in range(10):
>>> model.update(60.) # step 60 seconds forward
>>> model.finalize()

	
__init__(configfile)

	Initialize class

	Parameters

	configfile (str) – Model configuration file. See read_configfile().

	
crank_nicolson()

	Convenience function for semi-implicit solver based on Crank-Nicolson scheme

See also

model.AeoLiS.solve()

	
static dimensions(var=None)

	Static method that returns named dimensions of all spatial grids

	Parameters

	var (str, optional) – Name of spatial grid

	Returns

	Tuple with named dimensions of requested spatial grid or
dictionary with all named dimensions of all spatial
grids. Returns nothing if requested spatial grid is not
defined.

	Return type

	tuple or dict

	
euler_backward()

	Convenience function for implicit solver based on Euler backward scheme

See also

model.AeoLiS.solve()

	
euler_forward()

	Convenience function for explicit solver based on Euler forward scheme

See also

model.AeoLiS.solve()

	
finalize()

	Finalize model

	
get_count(name)

	Get counter value

	Parameters

	name (str) – Name of counter

	
get_current_time()

	
	Returns

	Current simulation time

	Return type

	float

	
get_end_time()

	
	Returns

	Final simulation time

	Return type

	float

	
get_start_time()

	
	Returns

	Initial simulation time

	Return type

	float

	
get_var(var)

	Returns spatial grid or model configuration parameter

If the given variable name matches with a spatial grid, the
spatial grid is returned. If not, the given variable name is
matched with a model configuration parameter. If a match is
found, the parameter value is returned. Otherwise, nothing is
returned.

	Parameters

	var (str) – Name of spatial grid or model configuration parameter

	Returns

	Spatial grid or model configuration parameter

	Return type

	np.ndarray or int, float, str or list

Examples

>>> # returns bathymetry grid
... model.get_var('zb')

>>> # returns simulation duration
... model.get_var('tstop')

See also

model.AeoLiS.set_var()

	
get_var_count()

	
	Returns

	Number of spatial grids

	Return type

	int

	
get_var_name(i)

	Returns name of spatial grid by index (in alphabetical order)

	Parameters

	i (int) – Index of spatial grid

	Returns

	Name of spatial grid or -1 in case index exceeds the number of grids

	Return type

	str or -1

	
get_var_rank(var)

	Returns rank of spatial grid

	Parameters

	var (str) – Name of spatial grid

	Returns

	Rank of spatial grid or -1 if not found

	Return type

	int

	
get_var_shape(var)

	Returns shape of spatial grid

	Parameters

	var (str) – Name of spatial grid

	Returns

	Dimensions of spatial grid or -1 if not found

	Return type

	tuple or int

	
get_var_type(var)

	Returns variable type of spatial grid

	Parameters

	var (str) – Name of spatial grid

	Returns

	Variable type of spatial grid or -1 if not found

	Return type

	str or int

	
initialize()

	Initialize model

Read model configuration file and initialize parameters and
spatial grids dictionary and load bathymetry and bed
composition.

	
inq_compound()

	Return the number of fields of a compound type.

	
inq_compound_field()

	Lookup the type,rank and shape of a compound field

	
set_timestep(dt=-1.0)

	Determine optimal time step

If no time step is given the optimal time step is
determined. For explicit numerical schemes the time step is
based in the Courant-Frierichs-Lewy (CFL) condition. For
implicit numerical schemes the time step specified in the
model configuration file is used. Alternatively, a preferred
time step is given that is maximized by the CFL condition in
case of an explicit numerical scheme.

Returns True except when:

1. No time step could be determined, for example when there is
no wind and the numerical scheme is explicit. In this case the
time step is set arbitrarily to one second.

2. Or when the time step is smaller than -1. In this case the
time is updated with the absolute value of the time step, but
no model execution is performed. This funcionality can be used
to skip fast-forward in time.

	Parameters

	df (float, optional) – Preferred time step

	Returns

	False if determination of time step was unsuccessful, True otherwise

	Return type

	bool

	
set_var(var, val)

	Sets spatial grid or model configuration parameter

If the given variable name matches with a spatial grid, the
spatial grid is set. If not, the given variable name is
matched with a model configuration parameter. If a match is
found, the parameter value is set. Otherwise, nothing is set.

	Parameters

	
	var (str) – Name of spatial grid or model configuration parameter

	val (np.ndarray or int, float, str or list) – Spatial grid or model configuration parameter

Examples

>>> # set bathymetry grid
... model.set_var('zb', np.array([[0.,0., ... ,0.]]))

>>> # set simulation duration
... model.set_var('tstop', 3600.)

See also

model.AeoLiS.get_var()

	
set_var_index(i, val)

	Set spatial grid by index (in alphabetical order)

	Parameters

	
	i (int) – Index of spatial grid

	val (np.ndarray) – Spatial grid

	
set_var_slice()

	Overwrite the values in variable name with data
from var, in the range (start:start+count).
Start, count can be integers for rank 1, and can be
tuples of integers for higher ranks.
For some implementations it can be equivalent and more efficient to do:
get_var(name)[start[0]:start[0]+count[0], …, start[n]:start[n]+count[n]] = var

	
solve(alpha=0.5, beta=1.0)

	Implements the explicit Euler forward, implicit Euler backward and semi-implicit Crank-Nicolson numerical schemes

Determines weights of sediment fractions, sediment pickup and
instantaneous sediment concentration. Returns a partial
spatial grid dictionary that can be used to update the global
spatial grid dictionary.

	Parameters

	
	alpha (float, optional) – Implicitness coefficient (0.0 for Euler forward, 1.0 for Euler backward or 0.5 for Crank-Nicolson, default=0.5)

	beta (float, optional) – Centralization coefficient (1.0 for upwind or 0.5 for centralized, default=1.0)

	Returns

	Partial spatial grid dictionary

	Return type

	dict

Examples

>>> model.s.update(model.solve(alpha=1., beta=1.) # euler backward

>>> model.s.update(model.solve(alpha=.5, beta=1.) # crank-nicolson

See also

model.AeoLiS.euler_forward(), model.AeoLiS.euler_backward(), model.AeoLiS.crank_nicolson(), transport.compute_weights(), transport.renormalize_weights()

	
solve_pieter(alpha=0.5, beta=1.0)

	Implements the explicit Euler forward, implicit Euler backward and semi-implicit Crank-Nicolson numerical schemes

Determines weights of sediment fractions, sediment pickup and
instantaneous sediment concentration. Returns a partial
spatial grid dictionary that can be used to update the global
spatial grid dictionary.

	Parameters

	
	alpha (float, optional) – Implicitness coefficient (0.0 for Euler forward, 1.0 for Euler backward or 0.5 for Crank-Nicolson, default=0.5)

	beta (float, optional) – Centralization coefficient (1.0 for upwind or 0.5 for centralized, default=1.0)

	Returns

	Partial spatial grid dictionary

	Return type

	dict

Examples

>>> model.s.update(model.solve(alpha=1., beta=1.) # euler backward

>>> model.s.update(model.solve(alpha=.5, beta=1.) # crank-nicolson

See also

model.AeoLiS.euler_forward(), model.AeoLiS.euler_backward(), model.AeoLiS.crank_nicolson(), transport.compute_weights(), transport.renormalize_weights()

	
solve_steadystate()

	Implements the steady state solution

	
update(dt=-1)

	Time stepping function

Takes a single step in time. Interpolates wind and
hydrodynamic time series to the current time, updates the soil
moisture, mixes the bed due to wave action, computes wind
velocity threshold and the equilibrium sediment transport
concentration. Subsequently runs one of the available
numerical schemes to compute the instantaneous sediment
concentration and pickup for the next time step and updates
the bed accordingly.

For explicit schemes the time step is maximized by the
Courant-Friedrichs-Lewy (CFL) condition. See
set_timestep().

	Parameters

	dt (float, optional) – Time step in seconds. The time step specified in the model
configuration file is used in case dt is smaller than
zero. For explicit numerical schemes the time step is
maximized by the CFL confition.

AeoLiSRunner

	
class model.AeoLiSRunner(configfile='aeolis.txt')

	AeoLiS model runner class

This runner class is a convenience class for the BMI-compatible
AeoLiS model class (AeoLiS()). It implements a
time loop, a progress indicator and netCDF4 output. It also
provides the definition of a callback function that can be used to
interact with the AeoLiS model during runtime.

The command-line function aeolis is available that uses this
class to start an AeoLiS model run.

Examples

>>> # run with default settings
... AeoLiSRunner().run()

>>> AeoLiSRunner(configfile='aeolis.txt').run()

>>> model = AeoLiSRunner(configfile='aeolis.txt')
>>> model.run(callback=lambda model: model.set_var('zb', zb))

>>> model.run(callback='bar.py:add_bar')

See also

console.aeolis

	
__init__(configfile='aeolis.txt')

	Initialize class

Reads model configuration file without parsing all referenced
files for the progress indicator and netCDF output. If no
configuration file is given, the default settings are used.

	Parameters

	configfile (str, optional) – Model configuration file. See read_configfile().

	
dump_restartfile()

	Dump model state to restart file

	
get_statistic(var, stat='avg')

	Return statistic of spatial grid

	Parameters

	
	var (str) – Name of spatial grid

	stat (str) – Name of statistic (avg, sum, var, min or max)

	Returns

	Statistic of spatial grid

	Return type

	numpy.ndarray

	
get_var(var, clear=True)

	Returns spatial grid, statistic or model configuration parameter

Overloads the get_var() function and
extends it with the functionality to return statistics on
spatial grids by adding a postfix to the variable name
(e.g. Ct_avg). Supported statistics are avg, sum, var, min and
max.

	Parameters

	
	var (str) – Name of spatial grid or model configuration
parameter. Spatial grid name can be extended with a
postfix to request a statistic (_avg, _sum, _var, _min or
_max).

	clear (bool) – Clear output statistics afterwards.

	Returns

	Spatial grid, statistic or model configuration parameter

	Return type

	np.ndarray or int, float, str or list

Examples

>>> # returns average sediment concentration
... model.get_var('Ct_avg')

>>> # returns variance in wave height
... model.get_var('Hs_var')

See also

model.AeoLiS.get_var()

	
initialize()

	Initialize model

Overloads the initialize() function, but
also initializes output statistics.

	
load_hotstartfiles()

	Load model state from hotstart files

Hotstart files are plain text representations of model state
variables that can be used to hotstart the (partial) model
state. Hotstart files should have the name of the model state
variable it contains and have the extension
.hotstart. Hotstart files differ from restart files in that
restart files contain entire model states and are pickled
Python objects.

See also

model.AeoLiSRunner.load_restartfile()

	
load_restartfile(restartfile)

	Load model state from restart file

	Parameters

	restartfile (str) – Path to previously written restartfile.

	
output_clear()

	Clears output statistics dictionary

Creates a matrix for minimum, maximum, variance and summed
values for each output variable and sets the time step counter
to zero.

	
output_init()

	Initialize netCDF4 output file and output statistics dictionary

	
output_update()

	Updates output statistics dictionary

Updates matrices with minimum, maximum, variance and summed
values for each output variable with current spatial grid
values and increases time step counter with one.

	
output_write()

	Appends output to netCDF4 output file

If the time since the last output is equal or larger than the
set output interval, append current output to the netCDF4
output file. Computes the average and variance values based on
available output statistics and clear output statistics
dictionary.

	
parse_callback(callback)

	Parses callback definition and returns function

The callback function can be specified in two formats:

	As a native Python function

	As a string refering to a Python script and function,
separated by a colon (e.g. example/callback.py:function)

	Parameters

	callback (str or function) – Callback definition

	Returns

	Python callback function

	Return type

	function

	
print_params()

	Print model configuration parameters to screen

	
print_progress(fraction=0.01, min_interval=1.0, max_interval=60.0)

	Print progress to screen

	Parameters

	
	fraction (float, optional) – Fraction of simulation at which to print progress (default: 1%)

	min_interval (float, optional) – Minimum time in seconds between subsequent progress prints (default: 1s)

	max_interval (float, optional) – Maximum time in seconds between subsequent progress prints (default: 60s)

	
print_stats()

	Print model run statistics to screen

	
run(callback=None, restartfile=None)

	Start model time loop

Changes current working directory to the model directory,
prints model configuration parameters and progress indicator
to the screen, writes netCDF4 output and calls a callback
function upon request.

	Parameters

	
	callback (str or function) – The callback function is called at the start of every
single time step and takes the AeoLiS model object as
input. The callback function can be used to interact with
the model during simulation (e.g. update the bed with new
measurements). See for syntax
parse_callback().

	restartfile (str) – Path to previously written restartfile. The model state is
loaded from this file after initialization of the model.

See also

model.AeoLiSRunner.parse_callback()

	
set_configfile(configfile)

	Set model configuration file name

	
set_params(**kwargs)

	Set model configuration parameters

	
update(dt=-1)

	Time stepping function

Overloads the update() function,
but also updates output statistics and clears output
statistics upon request.

	Parameters

	dt (float, optional) – Time step in seconds.

	
write_params()

	Write updated model configuration to configuration file

Creates a backup in case the model configration file already
exists.

See also

inout.backup()

WindGenerator

	
class model.WindGenerator(mean_speed=9.0, max_speed=30.0, dt=60.0, n_states=30, shape=2.0, scale=2.0)

	Wind velocity time series generator

Generates a random wind velocity time series with given mean and
maximum wind speed, duration and time resolution. The wind
velocity time series is generated using a Markov Chain Monte Carlo
(MCMC) approach based on a Weibull distribution. The wind time
series can be written to an AeoLiS-compatible wind input file
assuming a constant wind direction of zero degrees.

The command-line function aeolis-wind is available that uses
this class to generate AeoLiS wind input files.

Examples

>>> wind = WindGenerator(mean_speed=10.).generate(duration=24*3600.)
>>> wind.write_time_series('wind.txt')
>>> wind.plot()
>>> wind.hist()

See also

console.wind

	
__init__(mean_speed=9.0, max_speed=30.0, dt=60.0, n_states=30, shape=2.0, scale=2.0)

	

	
__weakref__

	list of weak references to the object (if defined)

Physics modules

Bathymetry and bed composition

	
bed.initialize(s, p)

	Initialize bathymetry and bed composition

Initialized bathymetry, computes cell sizes and orientation, bed
layer thickness and bed composition.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
bed.mixtoplayer(s, p)

	Mix grain size distribution in top layer of the bed.

Simulates mixing of the top layers of the bed by wave action. The
wave action is represented by a local wave height maximized by a
maximum wave hieght over depth ratio gamma. The mixing depth
is a fraction of the local wave height indicated by
facDOD. The mixing depth is used to compute the number of bed
layers that should be included in the mixing. The grain size
distribution in these layers is then replaced by the average grain
size distribution over these layers.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
bed.prevent_negative_mass(m, dm, pickup)

	Handle situations in which negative mass may occur due to numerics

Negative mass may occur by moving sediment to lower layers down to
accomodate deposition of sediments. In particular two cases are
important:

	A net deposition cell has some erosional fractions.

In this case the top layer mass is reduced according to the
existing sediment distribution in the layer to accomodate
deposition of fresh sediment. If the erosional fraction is
subtracted afterwards, negative values may occur. Therefore the
erosional fractions are subtracted from the top layer
beforehand in this function. An equal mass of deposition
fractions is added to the top layer in order to keep the total
layer mass constant. Subsequently, the distribution of the
sediment to be moved to lower layers is determined and the
remaining deposits are accomodated.

	Deposition is larger than the total mass in a layer.

In this case a non-uniform distribution in the bed may also
lead to negative values as the abundant fractions are reduced
disproportionally as sediment is moved to lower layers to
accomodate the deposits. This function fills the top layers
entirely with fresh deposits and moves the existing sediment
down such that the remaining deposits have a total mass less
than the total bed layer mass. Only the remaining deposits are
fed to the routine that moves sediment through the layers.

	Parameters

	
	m (np.ndarray) – Sediment mass in bed (nx*ny, nl, nf)

	dm (np.ndarray) – Total sediment mass exchanged between layers (nx*ny, nf)

	pickup (np.ndarray) – Sediment pickup (nx*ny, nf)

	Returns

	
	np.ndarray – Sediment mass in bed (nx*ny, nl, nf)

	np.ndarray – Total sediment mass exchanged between layers (nx*ny, nf)

	np.ndarray – Sediment pickup (nx*ny, nf)

Note

The situations handled in this function can also be prevented by
reducing the time step, increasing the layer mass or increasing
the adaptation time scale.

	
bed.update(s, p)

	Update bathymetry and bed composition

Update bed composition by moving sediment fractions between bed
layers. The total mass in a single bed layer does not change as
sediment removed from a layer is repleted with sediment from
underlying layers. Similarly, excess sediment added in a layer is
moved to underlying layers in order to keep the layer mass
constant. The lowest bed layer exchanges sediment with an infinite
sediment source that follows the original grain size distribution
as defined in the model configuration file by grain_size and
grain_dist. The bathymetry is updated following the
cummulative erosion/deposition over the fractions if bedupdate
is True.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
bed.wet_bed_reset(s, p)

	Text

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

Wind velocity and direction

	
wind.calculate_z0(p, s)

	Calculate z0 according to chosen roughness method

The z0 is required for the calculation of the shear velocity. Here, z0
is calculated based on a user-defined method. The constant method defines
the value of z0 as equal to k (z0 = ks). This was implemented to ensure
backward compatibility and does not follow the definition of Nikuradse
(z0 = k / 30). For following the definition of Nikuradse use the method
constant_nikuradse. The mean_grainsize_initial method uses the intial
mean grain size ascribed to the bed (grain_dist and grain_size in the
input file) to calculate the z0. The median_grainsize_adaptive bases the
z0 on the median grain size (D50) in the surface layer in every time step.
The resulting z0 is variable accross the domain (x,y). The
strypsteen_vanrijn method is based on the roughness calculation in their
paper.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	z0

	Return type

	array

	
wind.compute_shear1d(s, p)

	Compute wind shear perturbation for given free-flow wind
speed on computational grid. based on same implementation in Duna

	
wind.initialize(s, p)

	Initialize wind model

	
wind.interpolate(s, p, t)

	Interpolate wind velocity and direction to current time step

Interpolates the wind time series for velocity and direction to
the current time step. The cosine and sine of the direction angle
are interpolated separately to prevent zero-crossing errors. The
wind velocity is decomposed in two grid components based on the
orientation of each individual grid cell. In case of a
one-dimensional model only a single positive component is used.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	t (float) – Current time

	Returns

	Spatial grids

	Return type

	dict

	
class shear.WindShear(x, y, z, dx, dy, L, l, z0, buffer_width, buffer_relaxation=None)

	Class for computation of 2DH wind shear perturbations over a topography.

The class implements a 2D FFT solution to the wind shear
perturbation on curvilinear grids. As the FFT solution is only
defined on an equidistant rectilinear grid with circular boundary
conditions that is aligned with the wind direction, a rotating
computational grid is automatically defined for the computation.
The computational grid is extended in all directions using a
logistic sigmoid function as to ensure full coverage of the input
grid for all wind directions, circular boundaries and preservation
of the alongshore uniformity. An extra buffer distance can be
used as to minimize the disturbence from the borders in the input
grid. The results are interpolated back to the input grid when
necessary.

Frequencies related to wave lengths smaller than a computational
grid cell are filtered from the 2D spectrum of the topography
using a logistic sigmoid tapering. The filtering aims to minimize
the disturbance as a result of discontinuities in the topography
that may physically exists, but cannot be solved for in the
computational grid used.

Example

>>> w = WindShear(x, y, z)
>>> w(u0=10., udir=30.).add_shear(taux, tauy)

Notes

To do:

	
	Actual resulting values are still to be compared with the results
	from Kroy et al. (2002)

	Grid interpolation can still be optimized

	Separation bubble is still to be improved

	
add_shear()

	Add wind shear perturbations to a given wind shear field

	Parameters

	
	taux (numpy.ndarray) – Wind shear in x-direction

	tauy (numpy.ndarray) – Wind shear in y-direction

	Returns

	
	taux (numpy.ndarray) – Wind shear including perturbations in x-direction

	tauy (numpy.ndarray) – Wind shear including perturbations in y-direction

	
compute_shear(u0, nfilter=(1.0, 2.0))

	Compute wind shear perturbation for given free-flow wind
speed on computational grid

	Parameters

	
	u0 (float) – Free-flow wind speed

	nfilter (2-tuple) – Wavenumber range used for logistic sigmoid filter. See
filter_highfrequencies()

	
filter_highfrequenies(kx, ky, hs, nfilter=(1, 2))

	Filter high frequencies from a 2D spectrum

A logistic sigmoid filter is used to taper higher frequencies
from the 2D spectrum. The range over which the sigmoid runs
from 0 to 1 with a precision p is given by the 2-tuple
nfilter. The range is defined as wavenumbers in terms of
gridcells, i.e. a value 1 corresponds to a wave with length
dx.

	Parameters

	
	kx (numpy.ndarray) – Wavenumbers in x-direction

	ky (numpy.ndarray) – Wavenumbers in y-direction

	hs (numpy.ndarray) – 2D spectrum

	nfilter (2-tuple) – Wavenumber range used for logistic sigmoid filter

	p (float) – Precision of sigmoid range definition

	Returns

	hs – Filtered 2D spectrum

	Return type

	numpy.ndarray

	
static get_borders(x)

	Returns borders of a grid as one-dimensional array

	
static get_exact_grid(xmin, xmax, ymin, ymax, dx, dy)

	Returns a grid with given gridsizes approximately within given bounding box

	
get_separation()

	Returns difference in height between z-coordinate of
the separation polynomial and of the bed level

	Returns

	hsep – Height of seperation bubble

	Return type

	numpy.ndarray

	
get_shear()

	Returns wind shear perturbation field

	Returns

	
	taux (numpy.ndarray) – Wind shear perturbation in x-direction

	tauy (numpy.ndarray) – Wind shear perturbation in y-direction

	
interpolate(x, y, z, xi, yi, z0)

	Interpolate one grid to an other

	
plot(ax=None, cmap='Reds', stride=10, computational_grid=False, **kwargs)

	Plot wind shear perturbation

	Parameters

	
	ax (matplotlib.pyplot.Axes, optional) – Axes to plot onto

	cmap (matplotlib.cm.Colormap or string, optional) – Colormap for topography (default: Reds)

	stride (int, optional) – Stride to apply to wind shear vectors (default: 10)

	computational_grid (bool, optional) – Plot on computational grid rather than input grid
(default: False)

	kwargs (dict) – Additional arguments to matplotlib.pyplot.quiver()

	Returns

	ax – Axes used for plotting

	Return type

	matplotlib.pyplot.Axes

	
static rotate(x, y, alpha, origin=(0, 0))

	Rotate a matrix over given angle around given origin

	
separation_shear(hsep)

	Reduces the computed wind shear perturbation below the
separation surface to mimic the turbulence effects in the
separation bubble

	Parameters

	hsep (numpy.ndarray) – Height of seperation bubble (in x direction)

	
set_computational_grid(udir)

	Define computational grid

The computational grid is square with dimensions equal to the
diagonal of the bounding box of the input grid, plus twice the
buffer width.

Wind velocity threshold

	
threshold.compute(s, p)

	Compute wind velocity threshold based on bed surface properties

Computes wind velocity threshold based on grain size fractions,
bed slope, soil moisture content, air humidity, the presence of
roughness elements and a non-erodible layer. All bed surface
properties increase the current wind velocity threshold, except
for the grain size fractions. Therefore, the computation is
initialized by the grain size fractions and subsequently altered
by the other bed surface properties.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

See also

compute_grainsize(), compute_bedslope(), compute_moisture(), compute_humidity(), compute_sheltering(), non_erodible()

	
threshold.compute_bedslope(s, p)

	Modify wind velocity threshold based on bed slopes following Dyer (1986)

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
threshold.compute_grainsize(s, p)

	Compute wind velocity threshold based on grain size fractions following Bagnold (1937)

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
threshold.compute_moisture(s, p)

	Modify wind velocity threshold based on soil moisture content following
Belly (1964) or Hotta (1984)

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
threshold.compute_salt(s, p)

	Modify wind velocity threshold based on salt content following Nickling and Ecclestone (1981)

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
threshold.compute_sheltering(s, p)

	Modify wind velocity threshold based on the presence of roughness elements following Raupach (1993)

Raupach (1993) presents the following amplification factor for the
shear velocity threshold due to the presence of roughness
elements.

\[R_t = \frac{u_{*,th,s}}{u_{*,th,r}}
 = \sqrt{\frac{\tau_s''}{\tau}}
 = \frac{1}{\sqrt{\left(1 - m \sigma \lambda \right)
 \left(1 + m \beta \lambda \right)}}\]

\(m\) is a constant smaller or equal to unity that accounts
for the difference between the average stress on the bed surface
\(\tau_s\) and the maximum stress on the bed surface
\(\tau_s''\).

\(\beta\) is the stress partition coefficient defined as the
ratio between the drag coefficient of the roughness element itself
\(C_r\) and the drag coefficient of the bare surface without
roughness elements \(C_s\).

\(\sigma\) is the shape coefficient defined as the basal area
divided by the frontal area: \(\frac{A_b}{A_f}\). For
hemispheres \(\sigma = 2\), for spheres \(\sigma = 1\).

\(\lambda\) is the roughness density defined as the number of
elements per surface area \(\frac{n}{S}\) multiplied by the
frontal area of a roughness element \(A_f\), also known as the
frontal area index:

\[\lambda = \frac{n b h}{S} = \frac{n A_f}{S}\]

If multiplied by \(\sigma\) the equation simplifies to the
mass fraction of non-erodible elements:

\[\sigma \lambda = \frac{n A_b}{S} = \sum_{k=n_0}^{n_k} \hat{w}^{\mathrm{bed}}_k\]

where \(k\) is the fraction index, \(n_0\) is the smallest
non-erodible fraction, \(n_k\) is the largest non-erodible
fraction and \(\hat{w}^{\mathrm{bed}}_k\) is the mass fraction
of sediment fraction \(k\). It is assumed that the fractions
are ordered by increasing size.

Substituting the derivation in the Raupach (1993) equation gives
the formulation implemented in this function:

\[u_{*,th,r} = u_{*,th,s} * \sqrt{\left(1 - m \sum_{k=n_0}^{n_k} \hat{w}^{\mathrm{bed}}_k \right)
 \left(1 + m \frac{\beta}{\sigma} \sum_{k=n_0}^{n_k} \hat{w}^{\mathrm{bed}}_k \right)}\]

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
threshold.non_erodible(s, p)

	Modify wind velocity threshold based on the presence of a
non-erodible layer.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

Tides, meteorology and soil moisture content

Sediment transport

	
transport.compute_weights(s, p)

	Compute weights for sediment fractions

Multi-fraction sediment transport needs to weigh the transport of
each sediment fraction to prevent the sediment transport to
increase with an increasing number of sediment fractions. The
weighing is not uniform over all sediment fractions, but depends
on the sediment availibility in the air and the bed and the bed
interaction parameter bi.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Array with weights for each sediment fraction

	Return type

	numpy.ndarray

	
transport.constant_grainspeed(s, p)

	Define saltation velocity u [m/s]

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
transport.duran_grainspeed(s, p)

	Compute grain speed according to Duran 2007 (p. 42)

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
transport.equilibrium(s, p)

	Compute equilibrium sediment concentration following Bagnold (1937)

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
transport.renormalize_weights(w, ix)

	Renormalizes weights for sediment fractions

Renormalizes weights for sediment fractions such that the sum of
all weights is unity. To ensure that the erosion of specific
fractions does not exceed the sediment availibility in the bed,
the normalization only modifies the weights with index equal or
larger than ix.

	Parameters

	
	w (numpy.ndarray) – Array with weights for each sediment fraction

	ix (int) – Minimum index to be modified

	Returns

	Array with weights for each sediment fraction

	Return type

	numpy.ndarray

Avalanching

	
avalanching.angele_of_repose(s, p)

	Determine the dynamic and static angle of repose.

Both the critical dynamic and static angle of repose are spatial varying
and depend on surface moisture content and roots of present vegetation
and ….

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
avalanching.avalanche(s, p)

	Avalanching occurs if bed slopes exceed critical slopes.

Simulates the process of avalanching that is triggered by the exceedence
of a critical static slope theta_stat by the bed slope. The iteration
stops if the bed slope does not exceed the dynamic critical slope
theta_dyn.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

	
avalanching.calc_gradients(zb, nx, ny, ds, dn, zne)

	Calculates the downslope gradients in the bed that are needed for
avalanching module

	Returns

	Downslope gradients in 4 different directions (nx*ny, 4)

	Return type

	np.ndarray

Vegetation

	
vegetation.initialize(s, p)

	Initialise vegetation based on vegetation file.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	Returns

	Spatial grids

	Return type

	dict

Marine Erosion

	
erosion.run_ph12(s, p, t)

	Calculates bed level change due to dune erosion

Calculates bed level change due to dune erosion accoording to Palmsten and Holman (2012).

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	t (float) – Model time

	Returns

	Spatial grids

	Return type

	dict

Helper modules

Input/Output

	
inout.backup(fname)

	Creates a backup file of the provided file, if it exists

	
inout.check_configuration(p)

	Check model configuration validity

Checks if required parameters are set and if the references files
for bathymetry, wind, tide and meteorological input are
valid. Throws an error if one or more requirements are not met.

	Parameters

	p (dict) – Model configuration dictionary with parsed files

See also

read_configfile()

	
inout.get_backupfilename(fname)

	Returns a non-existing backup filename

	
inout.parse_value(val, parse_files=True, force_list=False)

	Casts a string to the most appropriate variable type

	Parameters

	
	val (str) – String representation of value

	parse_files (bool) – If True, files referred to by string parameters are parsed by
numpy.loadtxt

	force_list – If True, interpret the value as a list, even if it consists of
a single value

	Returns

	Casted value

	Return type

	misc

Examples

>>> type(parse_value('T'))
 bool
>>> type(parse_value('F'))
 bool
>>> type(parse_value('123'))
 int
>>> type(parse_value('123.2'))
 float
>>> type(parse_value('euler_forward'))
 str
>>> type(parse_value(''))
 NoneType
>>> type(parse_value('zb zs Ct'))
 numpy.ndarray
>>> type(parse_value('zb', force_list=True))
 numpy.ndarray
>>> type(parse_value('0.1 0.2 0.3')[0])
 float
>>> type(parse_value('wind.txt'), parse_files=True)
 numpy.ndarray
>>> type(parse_value('wind.txt'), parse_files=False)
 str

	
inout.read_configfile(configfile, parse_files=True, load_defaults=True)

	Read model configuration file

Updates default model configuration based on a model configuration
file. The model configuration file should be a text file with one
parameter on each line. The parameter name and value are seperated
by an equal sign (=). Any lines that start with a percent sign (%)
or do not contain an equal sign are omitted.

Parameters are casted into the best matching variable type. If the
variable type is str it is optionally interpreted as a
filename. If the corresponding file is found it is parsed using
the numpy.loadtxt function.

	Parameters

	
	configfile (str) – Model configuration file

	parse_files (bool) – If True, files referred to by string parameters are parsed

	load_defaults (bool) – If True, default settings are loaded and overwritten by the
settings from the configuration file

	Returns

	Dictionary with casted and optionally parsed model
configuration parameters

	Return type

	dict

See also

write_configfile(), check_configuration()

	
inout.visualize_grid(s, p)

	Create figures and tables for the user to check whether the grid-input is correctly interpreted

	
inout.visualize_spatial(s, p)

	Create figures and tables for the user to check whether the input is correctly interpreted

	
inout.visualize_timeseries(p, t)

	Create figures and tables for the user to check whether the timeseries-input is correctly interpreted

	
inout.write_configfile(configfile, p=None)

	Write model configuration file

Writes model configuration to file. If no model configuration is
given, the default configuration is written to file. Any
parameters with a name ending with _file and holding a matrix
are treated as separate files. The matrix is then written to an
ASCII file using the numpy.savetxt function and the parameter
value is replaced by the name of the ASCII file.

	Parameters

	
	configfile (str) – Model configuration file

	p (dict, optional) – Dictionary with model configuration parameters

	Returns

	Dictionary with casted and optionally parsed model
configuration parameters

	Return type

	dict

See also

read_configfile()

netCDF4 output

	
netcdf.append(outputfile, variables)

	Append variables to existing netCDF4 output file

Increments the time axis length with one and appends the provided
spatial grids along the time axis. The variables dictionary
should at least have the time field indicating the current
simulation time. The CF time bounds are updated accordingly.

	Parameters

	
	outputfile (str) – Name of netCDF4 output file

	variables (dict) – Dictionary with spatial grids and time

Examples

>>> netcdf.append('aeolis.nc', {'time', 3600.,
... 'Ct', np.array([[0.,0., ... ,0.]]),
... 'Cu', np.array([[1.,1., ... ,1.]]))

See also

set_bounds()

	
netcdf.dump(outputfile, dumpfile, var='mass', ix=-1)

	Dumps time slice from netCDF4 output file to ASCII file

This function can be used to use a specific time slice from a
netCDF4 output file as input file for another AeoLiS model
run. For example, the bed composition from a spinup run can be
used as initial composition for other runs reducing the spinup
time.

	Parameters

	
	outputfile (str) – Name of netCDF4 output file

	dumpfile (str) – Name of ASCII dump file

	var (str, optional) – Name of spatial grid to be dumped (default: mass)

	ix (int) – Time slice index to be dumped (default: -1)

Examples

>>> # use bedcomp_file = bedcomp.txt in model configuration file
... netcdf.dump('aeolis.nc', 'bedcomp.txt', var='mass')

	
netcdf.initialize(outputfile, outputvars, s, p, dimensions)

	Create empty CF-compatible netCDF4 output file

	Parameters

	
	outputfile (str) – Name of netCDF4 output file

	outputvars (dictionary) – Spatial grids to be written to netCDF4 output file

	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	dimensions (dict) – Dictionary that specifies a tuple with the named dimensions
for each spatial grid (e.g. (‘ny’, ‘nx’, ‘nfractions’))

Examples

>>> netcdf.initialize('aeolis.nc',
... ['Ct', 'Cu', 'zb'],
... ['avg', 'max'],
... s, p, {'Ct':('ny','nx','nfractions'),
... 'Cu':('ny','nx','nfractions'),
... 'zb':('ny','nx')})

	
netcdf.parse_metadata(outputvars)

	Parse metadata from constants.py

Parses the Python comments in constants.py to extract meta data,
like units, for the model state variables that can be used as
netCDF4 meta data.

	Parameters

	outputvars (dictionary) – Spatial grids to be written to netCDF4 output file

	Returns

	meta – Dictionary with meta data for the output variables

	Return type

	dict

	
netcdf.set_bounds(outputfile)

	Sets CF time bounds

	Parameters

	outputfile (str) – Name of netCDF4 output file

Plotting

Command-line tools

	
console.aeolis()

	aeolis : a process-based model for simulating supply-limited aeolian sediment transport

	Usage:
	aeolis <config> [options]

	Positional arguments:
	config configuration file

	Options:
	
	-h, --help

	show this help message and exit

	--callback=FUNC

	reference to callback function (e.g. example/callback.py:callback)

	--restart=FILE

	model restart file

	--verbose=LEVEL

	logging verbosity [default: 20]

	--debug

	write debug logs

	
console.wind()

	aeolis-wind : a wind time series generation tool for the aeolis model

	Usage:
	aeolis-wind <file> [–mean=MEAN] [–max=MAX] [–duration=DURATION] [–timestep=TIMESTEP]

	Positional arguments:
	file output file

	Options:
	
	-h, --help

	show this help message and exit

	--mean=MEAN

	mean wind speed [default: 10]

	--max=MAX

	maximum wind speed [default: 30]

	--duration=DURATION

	duration of time series [default: 3600]

	--timestep=TIMESTEP

	timestep of time series [default: 60]

Miscellaneous

	
utils.apply_mask(arr, mask)

	Apply complex mask

The real part of the complex mask is multiplied with the input
array. Subsequently the imaginary part is added and the result
returned.

The shape of the mask is assumed to match the first few dimensions
of the input array. If the input array is larger than the mask,
the mask is repeated for any additional dimensions.

	Parameters

	
	arr (numpy.ndarray) – Array or matrix to which the mask needs to be applied

	mask (numpy.ndarray) – Array or matrix with complex mask values

	Returns

	arr – Array or matrix to which the mask is applied

	Return type

	numpy.ndarray

	
utils.calc_grain_size(p, s, percent)

	Calculate grain size characteristics based on mass in each fraction

Calculate grain size distribution for each cell based on weight
distribution over the fractions. Interpolates to the requested percentage
in the grain size distribution. For example, percent=50 will result
in calculation of the D50. Calculation is only executed for the top layer

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	percent (float) – Requested percentage in grain size dsitribution

	Returns

	grain size per grid cell

	Return type

	array

	
utils.calc_mean_grain_size(p, s)

	Calculate mean grain size based on mass in each fraction

Calculate mean grain size for each cell based on weight distribution
over the fractions. Calculation is only executed for the top layer.

	Parameters

	
	s (dict) – Spatial grids

	p (dict) – Model configuration parameters

	percent (float) – Requested percentage in grain size dsitribution

	Returns

	mean grain size per grid cell

	Return type

	array

	
utils.format_log(msg, ncolumns=2, **props)

	Format log message into columns

Prints log message and additional data into a column format
that fits into a 70 character terminal.

	Parameters

	
	msg (str) – Main log message

	ncolumns (int) – Number of columns

	props (key/value pairs) – Properties to print in column format

	Returns

	Formatted log message

	Return type

	str

Note

Properties names starting with min, max or nr are
respectively replaced by min., max. or #.

	
utils.interp_array(x, xp, fp, circular=False, **kwargs)

	Interpolate multiple time series at once

	Parameters

	
	x (array_like) – The x-coordinates of the interpolated values.

	xp (1-D sequence of floats) – The x-coordinates of the data points, must be increasing.

	fp (2-D sequence of floats) – The y-coordinates of the data points, same length as xp.

	circular (bool) – Use the interp_circular() function rather than the
numpy.interp() function.

	kwargs (dict) – Keyword options to the numpy.interp() function

	Returns

	The interpolated values, same length as second dimension of fp.

	Return type

	ndarray

	
utils.interp_circular(x, xp, fp, **kwargs)

	One-dimensional linear interpolation.

Returns the one-dimensional piecewise linear interpolant to a
function with given values at discrete data-points. Values beyond
the limits of x are interpolated in circular manner. For
example, a value of x > x.max() evaluates as f(x-x.max())
assuming that x.max() - x < x.max().

	Parameters

	
	x (array_like) – The x-coordinates of the interpolated values.

	xp (1-D sequence of floats) – The x-coordinates of the data points, must be increasing.

	fp (1-D sequence of floats) – The y-coordinates of the data points, same length as xp.

	kwargs (dict) – Keyword options to the numpy.interp() function

	Returns

	y – The interpolated values, same shape as x.

	Return type

	{float, ndarray}

	Raises

	ValueError – If xp and fp have different length

	
utils.isarray(x)

	Check if variable is an array

	
utils.isiterable(x)

	Check if variable is iterable

	
utils.makeiterable(x)

	Ensure that variable is iterable

	
utils.normalize(x, ref=None, axis=0, fill=0.0)

	Normalize array

Normalizes an array to make it sum to unity over a specific
axis. The procedure is safe for dimensions that sum to zero. These
dimensions return the fill value instead.

	Parameters

	
	x (array_like) – The array to be normalized

	ref (array_like, optional) – Alternative normalization reference, if not specified, the sum of x is used

	axis (int, optional) – The normalization axis (default: 0)

	fill (float, optional) – The return value for all-zero dimensions (default: 0.)

	
utils.prevent_tiny_negatives(x, max_error=1e-10, replacement=0.0)

	Replace tiny negative values in array

	Parameters

	
	x (np.ndarray) – Array with potential tiny negative values

	max_error (float) – Maximum absolute value to be replaced

	replacement (float) – Replacement value

	Returns

	Array with tiny negative values removed

	Return type

	np.ndarray

	
utils.print_value(val, fill='<novalue>')

	Construct a string representation from an arbitrary value

	Parameters

	
	val (misc) – Value to be represented as string

	fill (str, optional) – String representation used in case no value is given

	Returns

	String representation of value

	Return type

	str

	
utils.rotate(x, y, alpha, origin=(0, 0))

	Rotate a matrix over given angle around given origin

Sierd’s favorite function is:
aeolis.bed.prevent_tiny_negatives

Input files

The computational grid and boundary conditions for AeoLiS are specified through external
input files called by the model parameter file aeolis.txt. The computational grid is defined
with an x grid, y grid, and z grid. Boundary conditions for wind, wave, and tides
are also specified with external text files. A list of additional grid and boundary
files can be found in the table below. Each file is further defined below.

	Input File

	File Description

	aeolis.txt

	File containing parameter definitions

	x.grd

	File containing cross-shore grid

	y.grd

	File containing alongshore grid (can be all zeros for 1D cases)

	z.grd

	File containing topography and bathymetry data

	veg.grd

	File containing initial vegetation density

	mass.txt

	File containing sediment mass data when using space varying grain size distribution

	wind.txt

	File containing wind speed and direction data

	tide.txt

	File containing water elevation data

	wave.txt

	File containing wave height and period data

	meteo.txt

	File containing meteorological time series data

aeolis.txt

This is the parameter file for AeoLiS that defines the model processes and boundary conditions.
Parameters in the file are specified by various keywords; each keyword has a pre-defined
default value that will be used if it is not direclty specified in aeolis.txt (a list of default parameter
values can be found in the Default settings tab on the left). Among the keywords
in aeolis.txt are the keywords to define the external computational grid files (xgrid_file, ygrid_file,
and bed_file) and external boundary condition files (tide_file, wave_file, wind_file, etc.).
The different physical processes in AeoLiS can be turned on and off by changing the
process keywords in aeolis.txt to T (True) and F (False). Example aeolis.txt parameters files can be
found in the examples folder on the AeoLiS GitHub.

x.grd

The x.grd file defines the computational grid in the cross-shore direction defined in meters.
In a 1-dimensional (1D) case, the file contains a single column of cross-shore locations
starting at zero for a location of choice. In a 2-dimesional (2D) case, the file
contains multiple columns (cross-shore positions) and rows (alongshore positions)
where each value corresponds to a specific location in the 2D grid. The file can be renamed
and is referenced from the parameters file with the xgrid_file keyword.

y.grd

This file defines the computational grid in the alongshore direction. In a 1D case,
y.grd will contain a single column of zeros. In a 2D case, similar to the x.grd file,
y.grd has multiple columns (cross-shore positions) and rows (alongshore positions)
where each row, column position corresponds to a specific location in the 2D gird.
x.grd and y.grd will always be the same size regardless of running a 1D or 2D simulation.
As with the x.grd file, this file can be renamed and is referenced from the parameters file with the
keyword: ygrid_file.

z.grd

The z.grd file provides the model with the elevation information for the computational
grid defined in x.grd and y.grd. Similar to x.grd and y.grd, when running
AeoLis in 1D the file contains a single column with the number of rows equal
to the number of rows in x.grd and y.grd. In 2D cases, z.grd has multiple columns and
rows of equal size to x.grd and y.grd. Elevation values in the file should be defined such that
positive is up and negative is down. The file can be renamed and is referenced from the
parameters file with the keyword: bed_file.

veg.grd

The veg.grd file is an optional grid providing initial vegetation coverage (density) at each position in the
model domain defined in x.grd and y.grd. Similar to the grid files, if simulations are in
2D there will be multiple columns for each cross-shore position (x) and multiple rows for
each alongshore position (y). The format of a 1D vegetation grid file can be seen below
where each red dots represent vegetation cover at each cross-shore position.

[image: vegetation input format]

Fig. 5 File format for a 1D AeoLis vegetation grid. Each red dot is the vegetation density at a specific location in the computational grid.

mass.txt

The mass.txt file allows users to specify variations in grain size distribution in both
horizontal and vertical directions. If the grain size distribution is constant throughout
the model domain, multifraction sediment transport is possilbe without this file. The file contains
the mass of each sediment fraction in each grid cell and bed layer. The file is formatted such that each
row corresponds to a specific location in the computational domain and the columns are grouped
by bed layers and each individual column represents a single sediment fraction present in the model
domain. An infinite number of sediment fractions can be defined in the model; however, it should be
noted the more sediment fractions present the longer the simulation time and larger the output files.

In a 1D case, the text file will have dimensions of number of cross-shore locations (x) by number
of sediment fractions times the number of bed layers. For example if you have 200 cross-shore positions
in your model domain and 4 different sediment fractions with 3 bed layers, your mass.txt file
will contain a matrix of 200 rows by 12 columns. An example of a 1D mass.txt file can be seen below
where each red dot represents a sediment fraction mass at a specific location in the model domain.

[image: mass file format 1D]

Fig. 6 File format for a 1D AeoLis mass for spatially variable grain size distributions. Each red dot is the mass for each sediment fraction
at each location in the computational grid (x, y, bed layer).

In a 2D case, the mass.txt file will have dimensions of number of cross-shore positions (x)
times the number of alongshore positions (x) by number of sediment fractions times the number of
bed layers. The file will be formatted such that the columns are grouped by bed layer with all available
sediment fractions present in each bed layer and rows are grouped by alongshore position with all
cross-shore prositions given for each alongshore position. An visual example of a 2D mass.txt input
file for AeoLis can be seen below.

[image: mass file format 2D]

Fig. 7 File format for a 2D AeoLis mass file for spatially variable grain size distributions. Each red dot is the mass for each sediment fraction
at each location in the computational grid (x, y, bed layer).

wind.txt

The wind.txt file provides the model with wind boundary conditions and is formatted similar to
the tide.txt and wave.txt files. The first column is time in seconds from
start, the second column is wind speed, and the third column is wind direction. The wind directions
can be specified in either nautical or cartesian convention (specified in aeolis.txt with keyword: wind_convention).
The format of this file can be seen below were each of the red dots represents a data value of time, wind speed,
or wind direction. As AeoLiS is an aeolian sediment transport model, the wind boundary conditions are of particular
importance.

[image: wind input format]

Fig. 8 File format for wind boundary conditions file for AeoLis input.

tide.txt

The tide.txt file contains the water elevation data for the duration of the
simulation. It is formatted such that the first column is time in seconds and
the second column is the water elevation data at each time step. An example of
the file format can be seen below where each red dot represents a data value for
time or water elevation.

[image: tide input format]

Fig. 9 File format for the water elevation conditions file for AeoLis input.

wave.txt

The wave.txt file provides the model with wave data used in AeoLiS for runup calculations.
The file is formatted similar to tide.txt but has three columns instead of two.
Here, the first column is time in seconds, the second column is wave height,
and the third column is the wave period. The format of this file can be seen
below where each red dot represents
a data value.

[image: wave input format]

Fig. 10 File format for the wave conditions file for AeoLis input.

meteo.txt

The meteo.txt file contains meteorological data used to simulate surface moisture in the model domain (see Simulation of surface moisture
in Model description on for surface moisture implementation in AeoLiS). This file is formatted similar to the other environmental boundary
condition files (wind, wave, and tide) such that it contains a time series of environmental data read into AeoLiS through keyword specification.
The keywords required to process surface moisture with evaporation and infiltration are process_moist = True, method_moist_process = surf_moisture,
th_moisture = True, and meteo_file = meteo.txt (or name of file containing meteorological data). An example of the meteo.txt file can be seen in the
figure below where each red dot represents a time series data value. The first column contains time (s), the second column is temperature (degrees C),
the thrid column is precipitation (mm/hr), the fourth column is relative humidity (%), the fifth column is global radiation (MJ/m^2/day), and the sixth
column is air pressure (kPa).

[image: meteo file format]

Fig. 11 File format for meteorological data used to simulate surface moisture in AeoLiS where each red dot represents a time series value.

Default settings

The AeoLiS model can be configured using a model configuration
file. For any configuration parameters not defined in the model
configuration file, or in case the model configuration file is absent,
the default model configuration is used. The default model
configuration is listed below.

DEFAULT_CONFIG = {
 'process_wind' : True, # Enable the process of wind
 'process_transport' : True, # Enable the process of transport
 'process_bedupdate' : True, # Enable the process of bed updating
 'process_threshold' : True, # Enable the process of threshold
 'th_grainsize' : True, # Enable wind velocity threshold based on grainsize
 'th_bedslope' : False, # Enable wind velocity threshold based on bedslope
 'th_moisture' : False, # Enable wind velocity threshold based on moisture
 'th_drylayer' : False, # Enable threshold based on drying of layer
 'th_humidity' : False, # Enable wind velocity threshold based on humidity
 'th_salt' : False, # Enable wind velocity threshold based on salt
 'th_sheltering' : False, # Enable wind velocity threshold based on sheltering by roughness elements
 'th_nelayer' : False, # Enable wind velocity threshold based on a non-erodible layer
 'process_avalanche' : False, # Enable the process of avalanching
 'process_shear' : False, # Enable the process of wind shear
 'process_tide' : False, # Enable the process of tides
 'process_wave' : False, # Enable the process of waves
 'process_runup' : False, # Enable the process of wave runup
 'process_moist' : False, # Enable the process of moist
 'process_mixtoplayer' : False, # Enable the process of mixing
 'process_wet_bed_reset' : False, # Enable the process of bed-reset in the intertidal zone
 'process_meteo' : False, # Enable the process of meteo
 'process_salt' : False, # Enable the process of salt
 'process_humidity' : False, # Enable the process of humidity
 'process_groundwater' : False, #NEWCH # Enable the process of groundwater
 'process_scanning' : False, #NEWCH # Enable the process of scanning curves
 'process_inertia' : False, # NEW
 'process_separation' : False, # Enable the including of separation bubble
 'process_vegetation' : False, # Enable the process of vegetation
 'process_fences' : False, # Enable the process of sand fencing
 'process_dune_erosion' : False, # Enable the process of wave-driven dune erosion
 'process_seepage_face' : False, # Enable the process of groundwater seepage (NB. only applicable to positive beach slopes)
 'visualization' : False, # Boolean for visualization of model interpretation before and just after initialization
 'xgrid_file' : None, # Filename of ASCII file with x-coordinates of grid cells
 'ygrid_file' : None, # Filename of ASCII file with y-coordinates of grid cells
 'bed_file' : None, # Filename of ASCII file with bed level heights of grid cells
 'wind_file' : None, # Filename of ASCII file with time series of wind velocity and direction
 'tide_file' : None, # Filename of ASCII file with time series of water levels
 'wave_file' : None, # Filename of ASCII file with time series of wave heights
 'meteo_file' : None, # Filename of ASCII file with time series of meteorlogical conditions
 'bedcomp_file' : None, # Filename of ASCII file with initial bed composition
 'threshold_file' : None, # Filename of ASCII file with shear velocity threshold
 'fence_file' : None, # Filename of ASCII file with sand fence location/height (above the bed)
 'ne_file' : None, # Filename of ASCII file with non-erodible layer
 'veg_file' : None, # Filename of ASCII file with initial vegetation density
 'wave_mask' : None, # Filename of ASCII file with mask for wave height
 'tide_mask' : None, # Filename of ASCII file with mask for tidal elevation
 'runup_mask' : None, # Filename of ASCII file with mask for run-up
 'threshold_mask' : None, # Filename of ASCII file with mask for the shear velocity threshold
 'gw_mask' : None, #NEWCH # Filename of ASCII file with mask for the groundwater level
 'nx' : 0, # [-] Number of grid cells in x-dimension
 'ny' : 0, # [-] Number of grid cells in y-dimension
 'dt' : 60., # [s] Time step size
 'dx' : 1.,
 'dy' : 1.,
 'CFL' : 1., # [-] CFL number to determine time step in explicit scheme
 'accfac' : 1., # [-] Numerical acceleration factor
 'max_bedlevel_change' : 999., # [m] Maximum bedlevel change after one timestep. Next timestep dt will be modified (use 999. if not used)
 'tstart' : 0., # [s] Start time of simulation
 'tstop' : 3600., # [s] End time of simulation
 'restart' : None, # [s] Interval for which to write restart files
 'dzb_interval' : 86400, # [s] Interval used for calcuation of vegetation growth
 'output_times' : 60., # [s] Output interval in seconds of simulation time
 'output_file' : None, # Filename of netCDF4 output file
 'output_vars' : ['zb', 'zs',
 'Ct', 'Cu',
 'uw', 'udir',
 'uth', 'mass'
 'pickup', 'w'], # Names of spatial grids to be included in output
 'output_types' : [], # Names of statistical parameters to be included in output (avg, sum, var, min or max)
 'external_vars' : [], # Names of variables that are overwritten by an external (coupling) model, i.e. CoCoNuT
 'grain_size' : [225e-6], # [m] Average grain size of each sediment fraction
 'grain_dist' : [1.], # [-] Initial distribution of sediment fractions
 'nlayers' : 3, # [-] Number of bed layers
 'layer_thickness' : .01, # [m] Thickness of bed layers
 'g' : 9.81, # [m/s^2] Gravitational constant
 'v' : 0.000015, # [m^2/s] Air viscosity
 'rhoa' : 1.225, # [kg/m^3] Air density
 'rhog' : 2650., # [kg/m^3] Grain density
 'rhow' : 1025., # [kg/m^3] Water density
 'porosity' : .4, # [-] Sediment porosity
 'Aa' : .085, # [-] Constant in formulation for wind velocity threshold based on grain size
 'z' : 10., # [m] Measurement height of wind velocity
 'h' : None, # [m] Representative height of saltation layer
 'k' : 0.001, # [m] Bed roughness
 'L' : 100., # [m] Typical length scale of dune feature (perturbation)
 'l' : 10., # [m] Inner layer height (perturbation)
 'c_b' : 0.2, # [-] Slope at the leeside of the separation bubble # c = 0.2 according to Durán 2010 (Sauermann 2001: c = 0.25 for 14 degrees)
 'mu_b' : 30, # [deg] Minimum required slope for the start of flow separation
 'buffer_width' : 10, # [m] Width of the bufferzone around the rotational grid for wind perturbation
 'sep_filter_iterations' : 0, # [-] Number of filtering iterations on the sep-bubble (0 = no filtering)
 'zsep_y_filter' : False, # [-] Boolean for turning on/off the filtering of the separation bubble in y-direction
 'Cb' : 1.5, # [-] Constant in bagnold formulation for equilibrium sediment concentration
 'Ck' : 2.78, # [-] Constant in kawamura formulation for equilibrium sediment concentration
 'Cl' : 6.7, # [-] Constant in lettau formulation for equilibrium sediment concentration
 'Cdk' : 5., # [-] Constant in DK formulation for equilibrium sediment concentration
 # 'm' : 0.5, # [-] Factor to account for difference between average and maximum shear stress
'alpha' : 0.4, # [-] Relation of vertical component of ejection velocity and horizontal velocity difference between impact and ejection
 'kappa' : 0.41, # [-] Von Kármán constant
 'sigma' : 4.2, # [-] Ratio between basal area and frontal area of roughness elements
 'beta' : 130., # [-] Ratio between drag coefficient of roughness elements and bare surface
 'bi' : 1., # [-] Bed interaction factor
 'T' : 1., # [s] Adaptation time scale in advection equation
 'Tdry' : 3600.*1.5, # [s] Adaptation time scale for soil drying
 'Tsalt' : 3600.*24.*30., # [s] Adaptation time scale for salinitation
 'Tbedreset' : 86400., # [s]
 'eps' : 1e-3, # [m] Minimum water depth to consider a cell "flooded"
 'gamma' : .5, # [-] Maximum wave height over depth ratio
 'xi' : .3, # [-] Surf similarity parameter
 'facDOD' : .1, # [-] Ratio between depth of disturbance and local wave height
 'csalt' : 35e-3, # [-] Maximum salt concentration in bed surface layer
 'cpair' : 1.0035e-3, # [MJ/kg/oC] Specific heat capacity air

 'fc' : 0.11, # NEWCH # [-] Moisture content at field capacity (volumetric)
 'w1_5' : 0.02, # NEWCH # [-] Moisture content at wilting point (gravimetric)
 'resw_moist' : 0.01, # NEWCH # [-] Residual soil moisture content (volumetric)
 'satw_moist' : 0.35, # NEWCH # [-] Satiated soil moisture content (volumetric)
 'resd_moist' : 0.01, # NEWCH # [-] Residual soil moisture content (volumetric)
 'satd_moist' : 0.5, # NEWCH # [-] Satiated soil moisture content (volumetric)
 'nw_moist' : 2.3, # NEWCH # [-] Pore-size distribution index in the soil water retention function
 'nd_moist' : 4.5, # NEWCH # [-] Pore-size distribution index in the soil water retention function
 'mw_moist' : 0.57, # NEWCH # [-] m, van Genucthen param (can be approximated as 1-1/n)
 'md_moist' : 0.42, # NEWCH # [-] m, van Genucthen param (can be approximated as 1-1/n)
 'alfaw_moist' : -0.070, # NEWCH # [cm^-1] Inverse of the air-entry value for a wetting branch of the soil water retention function (Schmutz, 2014)
 'alfad_moist' : -0.035, # NEWCH # [cm^-1] Inverse of the air-entry value for a drying branch of the soil water retention function (Schmutz, 2014)
 'thick_moist' : 0.002, # NEWCH # [m] Thickness of surface moisture soil layer
 'K_gw' : 0.00078, # NEWCH # [m/s] Hydraulic conductivity (Schmutz, 2014)
 'ne_gw' : 0.3, # NEWCH # [-] Effective porosity
 'D_gw' : 12, # NEWCH # [m] Aquifer depth
 'tfac_gw' : 10, # NEWCH # [-] Reduction factor for time step in ground water calculations
 'Cl_gw' : 0.7, # NEWCH # [m] Groundwater overheight due to runup
 'in_gw' : 0, # NEWCH # [m] Initial groundwater level
 'GW_stat' : 1, # NEWCH # [m] Landward static groundwater boundary (if static boundary is defined)
 'theta_dyn' : 33., # [degrees] Initial Dynamic angle of repose, critical dynamic slope for avalanching
 'theta_stat' : 34., # [degrees] Initial Static angle of repose, critical static slope for avalanching
 'avg_time' : 86400., # [s] Indication of the time period over which the bed level change is averaged for vegetation growth
 'gamma_vegshear' : 16., # [-] Roughness factor for the shear stress reduction by vegetation
 'hveg_max' : 1., # [m] Max height of vegetation
 'dzb_opt' : 0., # [m/year] Sediment burial for optimal growth
 'V_ver' : 0., # [m/year] Vertical growth
 'V_lat' : 0., # [m/year] Lateral growth
 'germinate' : 0., # [1/year] Possibility of germination per year
 'lateral' : 0., # [1/year] Posibility of lateral expension per year
 'veg_gamma' : 1., # [-] Constant on influence of sediment burial
 'veg_sigma' : 0.8, # [-] Sigma in gaussian distrubtion of vegetation cover filter
 'sedimentinput' : 0., # [-] Constant boundary sediment influx (only used in solve_pieter)
 'scheme' : 'euler_backward', # Name of numerical scheme (euler_forward, euler_backward or crank_nicolson)
 'solver' : 'trunk', # Name of the solver (trunk, pieter, steadystate,steadystatepieter)
 'boundary_lateral' : 'circular', # Name of lateral boundary conditions (circular, constant ==noflux)
 'boundary_offshore' : 'constant', # Name of offshore boundary conditions (flux, constant, uniform, gradient)
 'boundary_onshore' : 'gradient', # Name of onshore boundary conditions (flux, constant, uniform, gradient)
 'boundary_gw' : 'no_flow', # Landward groundwater boundary, dGw/dx = 0 (or 'static')
 'method_moist_threshold' : 'belly_johnson', # Name of method to compute wind velocity threshold based on soil moisture content
 'method_moist_process' : 'infiltration', # Name of method to compute soil moisture content(infiltration or surface_moisture)
 'offshore_flux' : 0., # [-] Factor to determine offshore boundary flux as a function of Q0 (= 1 for saturated flux , = 0 for noflux)
 'constant_offshore_flux' : 0., # [kg/m/s] Constant input flux at offshore boundary
 'onshore_flux' : 0., # [-] Factor to determine onshore boundary flux as a function of Q0 (= 1 for saturated flux , = 0 for noflux)
 'constant_onshore_flux' : 0., # [kg/m/s] Constant input flux at offshore boundary
 'lateral_flux' : 0., # [-] Factor to determine lateral boundary flux as a function of Q0 (= 1 for saturated flux , = 0 for noflux)
 'method_transport' : 'bagnold', # Name of method to compute equilibrium sediment transport rate
 'method_roughness' : 'constant', # Name of method to compute the roughness height z0, note that here the z0 = k, which does not follow the definition of Nikuradse where z0 = k/30.
 'method_grainspeed' : 'windspeed', # Name of method to assume/compute grainspeed (windspeed, duran, constant)
 'max_error' : 1e-6, # [-] Maximum error at which to quit iterative solution in implicit numerical schemes
 'max_iter' : 1000, # [-] Maximum number of iterations at which to quit iterative solution in implicit numerical schemes
 'max_iter_ava' : 1000, # [-] Maximum number of iterations at which to quit iterative solution in avalanching calculation
 'refdate' : '2020-01-01 00:00', # [-] Reference datetime in netCDF output
 'callback' : None, # Reference to callback function (e.g. example/callback.py':callback)
 'wind_convention' : 'nautical', # Convention used for the wind direction in the input files (cartesian or nautical)
 'alfa' : 0, # [deg] Real-world grid cell orientation wrt the North (clockwise)
 'dune_toe_elevation' : 3, # Choose dune toe elevation, only used in the PH12 dune erosion solver
 'beach_slope' : 0.1, # Define the beach slope, only used in the PH12 dune erosion solver
 'veg_min_elevation' : 3, # Choose the minimum elevation where vegetation can grow
 'vegshear_type' : 'raupach', # Choose the Raupach grid based solver (1D or 2D) or the Okin approach (1D only)
 'okin_c1_veg' : 0.48, #x/h spatial reduction factor in Okin model for use with vegetation
 'okin_c1_fence' : 0.48, #x/h spatial reduction factor in Okin model for use with sand fence module
 'okin_initialred_veg' : 0.32, #initial shear reduction factor in Okin model for use with vegetation
 'okin_initialred_fence' : 0.32, #initial shear reduction factor in Okin model for use with sand fence module
 'veggrowth_type' : 'orig', #'orig', 'duranmoore14'
 'rhoveg_max' : 0.5, #maximum vegetation density, only used in duran and moore 14 formulation
 't_veg' : 3, #time scale of vegetation growth (days), only used in duran and moore 14 formulation
 'v_gam' : 1, # only used in duran and moore 14 formulation
}

REQUIRED_CONFIG = ['nx', 'ny']

Model state/output

The AeoLiS model state is described by a collection of spatial grid
variables with at least one value per horizontal grid cell. Specific
model state variables can also be subdivided over bed composition
layers and/or grain size fractions. All model state variables can be
part of the model netCDF4 output. The current model state variables
are listed below.

INITIAL_STATE = {
 ('ny', 'nx') : (
 'uw', # [m/s] Wind velocity
 'uws', # [m/s] Component of wind velocity in x-direction
 'uwn', # [m/s] Component of wind velocity in y-direction

 'tau', # [N/m^2] Wind shear stress
 'taus', # [N/m^2] Component of wind shear stress in x-direction
 'taun', # [N/m^2] Component of wind shear stress in y-direction
 'tau0', # [N/m^2] Wind shear stress over a flat bed
 'taus0', # [N/m^2] Component of wind shear stress in x-direction over a flat bed
 'taun0', # [N/m^2] Component of wind shear stress in y-direction over a flat bed
 'taus_u', # [N/m^2] Saved direction of wind shear stress in x-direction
 'taun_u', # [N/m^2] Saved direction of wind shear stress in y-direction
 'dtaus', # [-] Component of the wind shear perturbation in x-direction
 'dtaun', # [-] Component of the wind shear perturbation in y-direction

 'ustar', # [m/s] Wind shear velocity
 'ustars', # [m/s] Component of wind shear velocity in x-direction
 'ustarn', # [m/s] Component of wind shear velocity in y-direction
 'ustar0', # [m/s] Wind shear velocity over a flat bed
 'ustars0', # [m/s] Component of wind shear velocity in x-direction over a flat bed
 'ustarn0', # [m/s] Component of wind shear velocity in y-direction over a flat bed

 'udir', # [rad] Wind direction
 'zs', # [m] Water level above reference (or equal to zb if zb > zs)
 'SWL', # [m] Still water level above reference
 'Hs', # [m] Wave height
 'Hsmix', # [m] Wave height for mixing (including setup, TWL)
 'Tp', # [s] Wave period for wave runup calculations
 'zne', # [m] Non-erodible layer
),
}

MODEL_STATE = {
 ('ny', 'nx') : (
 'x', # [m] Real-world x-coordinate of grid cell center
 'y', # [m] Real-world y-coordinate of grid cell center
 'ds', # [m] Real-world grid cell size in x-direction
 'dn', # [m] Real-world grid cell size in y-direction
 'dsdn', # [m^2] Real-world grid cell surface area
 'dsdni', # [m^-2] Inverse of real-world grid cell surface area
'alfa', # [rad] Real-world grid cell orientation #Sierd_comm in later releases this needs a revision
 'zb', # [m] Bed level above reference
 'zs', # [m] Water level above reference
 'zne', # [m] Height above reference of the non-erodible layer
 'zb0', # [m] Initial bed level above reference
 'zdry', # [m]
 'dzdry', # [m]
 'dzb', # [m/dt] Bed level change per time step (computed after avalanching!)
 'dzbyear', # [m/yr] Bed level change translated to m/y
 'dzbavg', # [m/year] Bed level change averaged over collected time steps
 'S', # [-] Level of saturation
 'moist', #NEWCH # [-] Moisture content (volumetric)
 'moist_swr', #NEWCH # [-] Moisture content soil water retention relationship (volumetric)
 'h_delta', #NEWCH # [-] Suction at reversal between wetting/drying conditions
 'gw', #NEWCH # [m] Groundwater level above reference
 'gw_prev', #NEWCH # [m] Groundwater level above reference in previous timestep
 'wetting', #NEWCH # [bool] Flag indicating wetting or drying of soil profile
 'scan_w', #NEWCH # [bool] Flag indicating that the moisture is calculated on the wetting scanning curve
 'scan_d', #NEWCH # [bool] Flag indicating that the moisture is calculated on the drying scanning curve
 'scan_w_moist', #NEWCH # [-] Moisture content (volumetric) computed on the wetting scanning curve
 'scan_d_moist', #NEWCH # [-] Moisture content (volumetric) computed on the drying scanning curve
 'w_h', #NEWCH # [-] Moisture content (volumetric) computed on the main wetting curve
 'd_h', #NEWCH # [-] Moisture content (volumetric) computed on the main drying curve
 'w_hdelta', #NEWCH # [-] Moisture content (volumetric) computed on the main wetting curve for hdelta
 'd_hdelta', #NEWCH # [-] Moisture content (volumetric) computed on the main drying curve for hdelta
 'ustar', # [m/s] Shear velocity by wind
 'ustars', # [m/s] Component of shear velocity in x-direction by wind
 'ustarn', # [m/s] Component of shear velocity in y-direction by wind
 'ustar0', # [m/s] Initial shear velocity (without perturbation)
 'zsep', # [m] Z level of polynomial that defines the separation bubble
 'hsep', # [m] Height of separation bubbel = difference between z-level of zsep and of the bed level zb
 'theta_stat', # [degrees] Updated, spatially varying static angle of repose
 'theta_dyn', # [degrees] Updated, spatially varying dynamic angle of repose
 'rhoveg', # [-] Vegetation cover
 'drhoveg', # Change in vegetation cover
 'hveg', # [m] height of vegetation
 'dhveg', # [m] Difference in vegetation height per time step
 'dzbveg', # [m] Bed level change used for calculation of vegetation growth
 'germinate', # vegetation germination
 'lateral', # vegetation lateral expansion
 'vegfac', # Vegetation factor to modify shear stress by according to Raupach 1993
 'fence_height', # Fence height
 'R', # [m] wave runup
 'eta', # [m] wave setup
 'sigma_s', # [m] swash
 'TWL', # [m] Total Water Level above reference (SWL + Run-up)
 'SWL', # [m] Still Water Level above reference
 'DSWL', # [m] Dynamic Still water level above reference (SWL + Set-up)
 'Rti', # [-] Factor taking into account sheltering by roughness elements
),
 ('ny','nx','nfractions') : (
 'Cu', # [kg/m^2] Equilibrium sediment concentration integrated over saltation height
 'Cuf', # [kg/m^2] Equilibrium sediment concentration integrated over saltation height, assuming the fluid shear velocity threshold
 'Cu0', # [kg/m^2] Flat bad equilibrium sediment concentration integrated over saltation height
 'Ct', # [kg/m^2] Instantaneous sediment concentration integrated over saltation height
 'q', # [kg/m/s] Instantaneous sediment flux
 'qs', # [kg/m/s] Instantaneous sediment flux in x-direction
 'qn', # [kg/m/s] Instantaneous sediment flux in y-direction
 'pickup', # [kg/m^2] Sediment entrainment
 'w', # [-] Weights of sediment fractions
 'w_init', # [-] Initial guess for ``w''
 'w_air', # [-] Weights of sediment fractions based on grain size distribution in the air
 'w_bed', # [-] Weights of sediment fractions based on grain size distribution in the bed
 'uth', # [m/s] Shear velocity threshold
 'uthf', # [m/s] Fluid shear velocity threshold
 'uth0', # [m/s] Shear velocity threshold based on grainsize only (aerodynamic entrainment)
 'u', # [m/s] Mean horizontal saltation velocity in saturated state
 'us', # [m/s] Component of the saltation velocity in x-direction
 'un', # [m/s] Component of the saltation velocity in y-direction
 'u0',
),
 ('ny','nx','nlayers') : (
 'thlyr', # [m] Bed composition layer thickness
 'salt', # [-] Salt content
),
 ('ny','nx','nlayers','nfractions') : (
 'mass', # [kg/m^2] Sediment mass in bed
),
}

Installation

Requirements

Python packages

	bmi-python: http://github.com/openearth/bmi-python

	numpy

	scipy

	netCDF4

	docopt

External libraries (Windows)

These libraries are needed on Windows if the Python package netCDF4 is installed manually.

	Microsoft Visual C++ Compiler for Python 2.7: http://aka.ms/vcpython27

	msinttypes for stdint.h: https://code.google.com/archive/p/msinttypes/

	HDF5 headers: https://www.hdfgroup.org/HDF5/release/obtain5.html

	netCDF4 headers: https://github.com/Unidata/netcdf-c/releases

	Set environment variables HDF5_DIR and NETCDF_DIR to the respective installation paths

What’s New

v2.1.1 (March 2023)

Improvements

	New variable to simulate fences fence_height (Glenn Strypsteen)

Bug fixes

	Issue with checking the size of y in input file for 1D cases (Glenn Strypsteen)

Documentation

	Update references to default branch in contributing guide

v2.1.0 (February 2023)

Breaking changes

	Solve unrealistic behaviour for large tidal ranges and mildly sloping beaches

	Reduce computational time when using Numba

Improvements

	Better documentation on numerical solvers

Bug fixes

	Solve conflict between versions of Numpy and Numba

	Solve incompatibility with Scipy 1.10

Tests

	Adopt Pytest as a testing framework

v2.0.0 (April 2022)

Breaking changes

	New vegetation growth/expansion capabilities (Bart Van Westen)

	Addition of groundwater module and new moisture routines (Caroline Hallin)

	Incorporation of Okin (2008) vegetation shear coupler (Nick Cohn)

	Addition of Palmsten and Holman (2012) dune erosion module (Nick Cohn)

	Approach to add sand fences into model (Nick Cohn)

Improvements

	Replacement of wave runup driver with Stockdon et al. (2006) (Nick Cohn)

	Non-FFT 1D based topographic shear coupler added for computational speed up (Nick Cohn)

v1.2.2 (18 April 2020)

Breaking changes

	Removed support for statistical variable names with dot-notation
(e.g. .avg and .sum) (Bas Hoonhout)

Improvements

	Logger shows minute by minute updates (Tom Pak)

New functions/methods

	Avalanching process included in bed.py (Tom Pak)

	Implementation of non-erodible layers (Tom Pak)

Bug fixes

	boundary condition definition updated (Tom Pak)

	compatiblity with new NETCDF4 version restored (Sierd de Vries)

	compatiblity with 1D domains (Sierd de Vries)

Tests

None.

v1.1.5 (unreleased)

Breaking changes

None.

Improvements

	Also enable inundation if process_tide is True, but tide_file not
specified. In this case the water level is constant zero.

	Changed class attributes into instance attributes to support
parallel independent model instances.

New functions/methods

None.

Bug fixes

	Fixed double definition of statistics variables in netCDF file in
case both output_types is specified and individual statistics
variables are specified in output_vars.

Tests

None.

v1.1.4 (15 February 2018)

Improvements

	Route all log messages and exceptions through the logging
module. Consequently, all information, warnings, and exceptions,
including tracebacks can be logged to file.

	Added model version number and Git hash to log files and model
output.

v1.1.3 (9 February 2018)

Bug fixes

	Apply precipitation/eaporation only in top bed layer to prevent
mismatching matrix shapes in the multiplication. In the future,
precipitation might be distributed over multiple layers depending on
the porosity.

v1.1.2 (21 December 2017)

Breaking changes

	Changed name of statistics variables that describe the average,
minimum, maximum, cumulative values, or variance of a model state
variable. The variables names that used to end with .avg, .sum,
etc. now end with _avg, _sum, etc. The new naming convention was
already adopted in the netCDF output in order to be compatible with
the CF-1.6 convention, but is now also adopted in, for example, the
Basic Model Interface (BMI). Old notation is deprecated but still
supported.

Improvements

	Prepared for continuous integration through CircleCI.

	Prepared for code coverage checking through codecov.

Bug fixes

	Use percentages (0-100) rather than fractions (0-1) in the
formulation of Belly and Johnson that describes the effect of soil
moisture on the shear velocity threshold. Thanks to Dano Roelvink
and Susana Costas (b3d992b).

Tests

	Reduced required accuracy for mass conservation tests from
0.00000000000001% to 1%.

v1.1.1 (15 November 2017)

Improvements

	Made code compatible with Python 3.x.

	Prepared and uploaded package to PyPI.

	Switch back to original working directory after finishing
simulation.

	Removed double definition of model state. Now only defined in
constants.MODEL_STATE.

	Also write initial model state to output.

	Made netCDF output compatible with CF-1.6 convention.

New functions/methods

	Added support to run a default model for testing purposes by setting
the configuration file as “DEFAULT”.

	Added generic framework for reading and applying spatial
masks. Implemented support for wave, tide and threshold masks
specifically.

	Added option to include a reference date in netCDF output.

	Added experimental option for constant boundary conditions.

	Added support for reading and writing hotstart files to load a
(partial) model state upon initialisation.

	Added preliminary wind shear perturbation module. Untested.

	Added support to switch on or off specific processes.

	Added support for immutable model state variables. This
functionality can be combined with BMI or hotstart files to prevent
external process results to be overwritten by the model.

	Added option to specify wind direction convention (nautical or
cartesian).

Bug fixes

	Fixed conversion from volume to mass using porosity and density (fe9aa52).

	Update water level with bed updates to prevent loss of water due to
bed level change (fe9aa52).

	Fixed mass bug in base layer that drained sediment from bottom
layers, resulting in empty layers (f612760).

	Made removal of negative concentrations mass conserving by scraping
the concentrations from all other grid cells (03de813).

Tests

	Added tests to check mass conservation in bed mixing routines.

	Added integration tests.

v1.1.0 (27 July 2016)

Initial release

 Python Module Index

 a |
 b |
 c |
 e |
 i |
 n |
 s |
 t |
 u |
 v |
 w

 		 	

 		
 a	

 	
 	
 avalanching	

 		 	

 		
 b	

 	
 	
 bed	

 		 	

 		
 c	

 	
 	
 console	

 		 	

 		
 e	

 	
 	
 erosion	

 		 	

 		
 i	

 	
 	
 inout	

 		 	

 		
 n	

 	
 	
 netcdf	

 		 	

 		
 s	

 	
 	
 shear	

 		 	

 		
 t	

 	
 	
 threshold	

 	
 	
 transport	

 		 	

 		
 u	

 	
 	
 utils	

 		 	

 		
 v	

 	
 	
 vegetation	

 		 	

 		
 w	

 	
 	
 wind	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (model.AeoLiS method)

 	(model.AeoLiSRunner method)

 	(model.WindGenerator method)

 	
 	__weakref__ (model.WindGenerator attribute)

A

 	
 	add_shear() (shear.WindShear method)

 	AeoLiS (class in model)

 	aeolis() (in module console)

 	AeoLiSRunner (class in model)

 	angele_of_repose() (in module avalanching)

 	
 	append() (in module netcdf)

 	apply_mask() (in module utils)

 	avalanche() (in module avalanching)

 	
 avalanching

 	module

B

 	
 	backup() (in module inout)

 	
 	
 bed

 	module

C

 	
 	calc_gradients() (in module avalanching)

 	calc_grain_size() (in module utils)

 	calc_mean_grain_size() (in module utils)

 	calculate_z0() (in module wind)

 	check_configuration() (in module inout)

 	compute() (in module threshold)

 	compute_bedslope() (in module threshold)

 	compute_grainsize() (in module threshold)

 	compute_moisture() (in module threshold)

 	
 	compute_salt() (in module threshold)

 	compute_shear() (shear.WindShear method)

 	compute_shear1d() (in module wind)

 	compute_sheltering() (in module threshold)

 	compute_weights() (in module transport)

 	
 console

 	module

 	constant_grainspeed() (in module transport)

 	crank_nicolson() (model.AeoLiS method)

D

 	
 	dimensions() (model.AeoLiS static method)

 	dump() (in module netcdf)

 	
 	dump_restartfile() (model.AeoLiSRunner method)

 	duran_grainspeed() (in module transport)

E

 	
 	equilibrium() (in module transport)

 	
 erosion

 	module

 	
 	euler_backward() (model.AeoLiS method)

 	euler_forward() (model.AeoLiS method)

F

 	
 	filter_highfrequenies() (shear.WindShear method)

 	
 	finalize() (model.AeoLiS method)

 	format_log() (in module utils)

G

 	
 	get_backupfilename() (in module inout)

 	get_borders() (shear.WindShear static method)

 	get_count() (model.AeoLiS method)

 	get_current_time() (model.AeoLiS method)

 	get_end_time() (model.AeoLiS method)

 	get_exact_grid() (shear.WindShear static method)

 	get_separation() (shear.WindShear method)

 	get_shear() (shear.WindShear method)

 	
 	get_start_time() (model.AeoLiS method)

 	get_statistic() (model.AeoLiSRunner method)

 	get_var() (model.AeoLiS method)

 	(model.AeoLiSRunner method)

 	get_var_count() (model.AeoLiS method)

 	get_var_name() (model.AeoLiS method)

 	get_var_rank() (model.AeoLiS method)

 	get_var_shape() (model.AeoLiS method)

 	get_var_type() (model.AeoLiS method)

I

 	
 	initialize() (in module bed)

 	(in module netcdf)

 	(in module vegetation)

 	(in module wind)

 	(model.AeoLiS method)

 	(model.AeoLiSRunner method)

 	
 inout

 	module

 	
 	inq_compound() (model.AeoLiS method)

 	inq_compound_field() (model.AeoLiS method)

 	interp_array() (in module utils)

 	interp_circular() (in module utils)

 	interpolate() (in module wind)

 	(shear.WindShear method)

 	isarray() (in module utils)

 	isiterable() (in module utils)

L

 	
 	load_hotstartfiles() (model.AeoLiSRunner method)

 	
 	load_restartfile() (model.AeoLiSRunner method)

M

 	
 	makeiterable() (in module utils)

 	mixtoplayer() (in module bed)

 	
 module

 	avalanching

 	bed

 	console

 	erosion

 	inout

 	netcdf

 	shear

 	threshold

 	transport

 	utils

 	vegetation

 	wind

N

 	
 	
 netcdf

 	module

 	
 	non_erodible() (in module threshold)

 	normalize() (in module utils)

O

 	
 	output_clear() (model.AeoLiSRunner method)

 	output_init() (model.AeoLiSRunner method)

 	
 	output_update() (model.AeoLiSRunner method)

 	output_write() (model.AeoLiSRunner method)

P

 	
 	parse_callback() (model.AeoLiSRunner method)

 	parse_metadata() (in module netcdf)

 	parse_value() (in module inout)

 	plot() (shear.WindShear method)

 	prevent_negative_mass() (in module bed)

 	
 	prevent_tiny_negatives() (in module utils)

 	print_params() (model.AeoLiSRunner method)

 	print_progress() (model.AeoLiSRunner method)

 	print_stats() (model.AeoLiSRunner method)

 	print_value() (in module utils)

R

 	
 	read_configfile() (in module inout)

 	renormalize_weights() (in module transport)

 	rotate() (in module utils)

 	(shear.WindShear static method)

 	
 	run() (model.AeoLiSRunner method)

 	run_ph12() (in module erosion)

S

 	
 	separation_shear() (shear.WindShear method)

 	set_bounds() (in module netcdf)

 	set_computational_grid() (shear.WindShear method)

 	set_configfile() (model.AeoLiSRunner method)

 	set_params() (model.AeoLiSRunner method)

 	set_timestep() (model.AeoLiS method)

 	set_var() (model.AeoLiS method)

 	
 	set_var_index() (model.AeoLiS method)

 	set_var_slice() (model.AeoLiS method)

 	
 shear

 	module

 	solve() (model.AeoLiS method)

 	solve_pieter() (model.AeoLiS method)

 	solve_steadystate() (model.AeoLiS method)

T

 	
 	
 threshold

 	module

 	
 	
 transport

 	module

U

 	
 	update() (in module bed)

 	(model.AeoLiS method)

 	(model.AeoLiSRunner method)

 	
 	
 utils

 	module

V

 	
 	
 vegetation

 	module

 	
 	visualize_grid() (in module inout)

 	visualize_spatial() (in module inout)

 	visualize_timeseries() (in module inout)

W

 	
 	wet_bed_reset() (in module bed)

 	
 wind

 	module

 	wind() (in module console)

 	
 	WindGenerator (class in model)

 	WindShear (class in shear)

 	write_configfile() (in module inout)

 	write_params() (model.AeoLiSRunner method)

 _images/mass_text_file_graphic.jpeg
bed layers

220 © © 06 0 0 ©
Qo
B
s"® @ © @ & 0 ©
&
o
c
mz.......
®
"0 & & & 0 0 o
220 @ 0 0 0 0 ©
Qo i
=
s"® & © 6 & 0 ¢
£
mz.......
®
"0 @ © 6 0 0 0
»z® @ & 0 0 0 ©
8
B
s"® @ @ © & 0 ¢
£
mz.......
=
e
"0 @ © 6 0 0 0

uojysod-x

_images/meteo_file_format.jpeg
Time

Global

Temperature Radiation Precipitation Pressure
(°C) (MJ/m?/d) (mm/hr) (kPa)
® ® @ ®
® ® ® ®
® ® ® ®
> ® © ®
e @ @ ®
¢ ® e ®
® ® ® ®

Relative
Humidity (%)

_images/mass_text_file_2D.jpeg
bed layers

Imnoooo R
ERLIC I I XX
ice0 0 @ R
i-e0 0 @ EEEEEEXEE)
[{2:0 0 0 @ eeoe e o000 0
2 i
ire o 0 o e0o o0 o oo o o
fce0e @ eeoe e o000 0
000 @ R
Imnoooo EEEEEEEE)
o0 o e0e 00 o000 o
ic0e0e0 @ R
7000 @ EEEEEEEE)
- 1T T €N T T €N T ¢ €N

suopisod-x suopisod-x suonisod-x
| >] | . >] | - >|

8 2 - NA

—_—

suonisod-A

_images/tide_text_file.jpeg
Time

Time (s)

Water Elevation
(m)
[

_images/vegetation_text_file.jpeg
X-position

Vegetation
Cover

_images/moisture_processes.jpg
Precipitation Evaporation/condensation

|

Runup

oz

Infiltration

——

1 Capillary rise

Groundwater table

_images/moisture_scheme.jpg
Initial groundwater level
Groundwater level from
previous timestep

Initial moisture content
Moisture content from
previous timestep

Computed groundwater level
The Boussinesq equation is solved

Inumerically with the wave setup level as|

seaward boundary condition

nfiltration
The infiltration rate of moisture
xceeding field capacity is computed witl
an exponential decay function

Effectof runup on groundwater
Alocal runup-generated groundwater

overheight is computed with an
empirical equ

Runup
Computation cells below the runup level
are assumed to be saturated

Capillary rise from groundwater
‘The surface moisture is computed
following the van Genuchten soil water
retention relationship

Precipitation and evaporation
Precipitation and evaporation computed
with the Penman equation are added or

subrtracted from the moisture content

Select largest

M

Resulting moisture
content

_images/wave_text_file_graphic.jpeg
Time

Time (s)

Wave Height
(m)

Peak Period
(s)

_images/wind_text_file_graphic.jpeg
Time

Time (s)

Wind Speed
(m/s)

Wind
Direction (°)

nav.xhtml

 Table of Contents

 		
 Welcome to AeoLiS’s documentation!

 		
 Model description

 		
 Advection Scheme

 		
 Multi-fraction Erosion and Deposition

 		
 Simulation of Sediment Sorting and Beach Armoring

 		
 Simulation of the Emergence of Non-erodible Roughness Elements

 		
 Simulation of the Hydraulic Mixing

 		
 Simulation of surface moisture

 		
 Runup and wave setup

 		
 Tide- and wave-induced groundwater variations

 		
 Capillary rise

 		
 Infiltration

 		
 Precipitation and evaporation

 		
 Shear velocity threshold

 		
 Moisture content

 		
 Roughness elements

 		
 Salt content

 		
 Numerical implementation

 		
 Advection equation

 		
 Default scheme – Conservative Euler Backward Implicit

 		
 Solving the Linear System of Equations

 		
 Iterations to solve for multiple fractions

 		
 Euler Schemes in non-conservative form

 		
 Shear stress perturbation for non-perpendicular wind directions

 		
 Boussinesq groundwater equation

 		
 Basic Model Interface (BMI)

 		
 Source code documentation

 		
 Use of documentation

 		
 Model classes

 		
 AeoLiS

 		
 AeoLiSRunner

 		
 WindGenerator

 		
 Physics modules

 		
 Bathymetry and bed composition

 		
 Wind velocity and direction

 		
 Wind velocity threshold

 		
 Tides, meteorology and soil moisture content

 		
 Sediment transport

 		
 Avalanching

 		
 Vegetation

 		
 Marine Erosion

 		
 Helper modules

 		
 Input/Output

 		
 netCDF4 output

 		
 Plotting

 		
 Command-line tools

 		
 Miscellaneous

 		
 Input files

 		
 aeolis.txt

 		
 x.grd

 		
 y.grd

 		
 z.grd

 		
 veg.grd

 		
 mass.txt

 		
 wind.txt

 		
 tide.txt

 		
 wave.txt

 		
 meteo.txt

 		
 Default settings

 		
 Model state/output

 		
 Installation

 		
 Requirements

 		
 Python packages

 		
 External libraries (Windows)

 		
 What’s New

 		
 v2.1.1 (March 2023)

 		
 Improvements

 		
 Bug fixes

 		
 Documentation

 		
 v2.1.0 (February 2023)

 		
 Breaking changes

 		
 Improvements

 		
 Bug fixes

 		
 Tests

 		
 v2.0.0 (April 2022)

 		
 Breaking changes

 		
 Improvements

 		
 v1.2.2 (18 April 2020)

 		
 Breaking changes

 		
 Improvements

 		
 New functions/methods

 		
 Bug fixes

 		
 Tests

 		
 v1.1.5 (unreleased)

 		
 Breaking changes

 		
 Improvements

 		
 New functions/methods

 		
 Bug fixes

 		
 Tests

 		
 v1.1.4 (15 February 2018)

 		
 Improvements

 		
 v1.1.3 (9 February 2018)

 		
 Bug fixes

 		
 v1.1.2 (21 December 2017)

 		
 Breaking changes

 		
 Improvements

 		
 Bug fixes

 		
 Tests

 		
 v1.1.1 (15 November 2017)

 		
 Improvements

 		
 New functions/methods

 		
 Bug fixes

 		
 Tests

 		
 v1.1.0 (27 July 2016)

_static/minus.png

_static/plus.png

_static/file.png

